Usability of cGAN for Partial Discharge Detection in Covered Conductors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256175" target="_blank" >RIV/61989100:27740/24:10256175 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/24:10256175 RIV/61989100:27730/24:10256175
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-71115-2_17#chapter-info" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-71115-2_17#chapter-info</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-71115-2_17" target="_blank" >10.1007/978-3-031-71115-2_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Usability of cGAN for Partial Discharge Detection in Covered Conductors
Popis výsledku v původním jazyce
Partial discharges (PD) in cross-linked polyethylene insulated covered conductors (CCs) present a challenge to power system reliability, particularly in areas where vegetation clearance is restricted. While antenna-based PD detection offers a non-contact solution, the scarcity of positive samples and inherent signal noise create a significantly imbalanced dataset, hindering traditional classification approaches. Furthermore, the lack of prior research on Conditional Generative Adversarial Networks (cGANs) for PD detection in CCs makes direct performance evaluation difficult. To address these limitations, this study explores the potential of cGANs in mitigating data scarcity and enhancing PD detection in CCs. We propose a novel hyperparameter tuning methodology that optimizes cGANs based on classification performance using the Matthews Correlation Coefficient as a metric. This approach allows us to indirectly gauge the cGAN's ability to generate realistic, balanced synthetic PD data, that helps classification. Results suggest that a well-tuned cGAN can successfully generate synthetic data to augment limited real-world samples. This expanded dataset significantly enhances the accuracy of subsequent PD classification tasks. Additionally, the method facilitates system adaptability in the event of hardware upgrades (e.g., antennas, ADCs) by reducing the need for extensive new data collection. This study demonstrates the potential of cGANs as a valuable tool for improving PD detection in CCs, leading to enhanced power system reliability and proactive maintenance.
Název v anglickém jazyce
Usability of cGAN for Partial Discharge Detection in Covered Conductors
Popis výsledku anglicky
Partial discharges (PD) in cross-linked polyethylene insulated covered conductors (CCs) present a challenge to power system reliability, particularly in areas where vegetation clearance is restricted. While antenna-based PD detection offers a non-contact solution, the scarcity of positive samples and inherent signal noise create a significantly imbalanced dataset, hindering traditional classification approaches. Furthermore, the lack of prior research on Conditional Generative Adversarial Networks (cGANs) for PD detection in CCs makes direct performance evaluation difficult. To address these limitations, this study explores the potential of cGANs in mitigating data scarcity and enhancing PD detection in CCs. We propose a novel hyperparameter tuning methodology that optimizes cGANs based on classification performance using the Matthews Correlation Coefficient as a metric. This approach allows us to indirectly gauge the cGAN's ability to generate realistic, balanced synthetic PD data, that helps classification. Results suggest that a well-tuned cGAN can successfully generate synthetic data to augment limited real-world samples. This expanded dataset significantly enhances the accuracy of subsequent PD classification tasks. Additionally, the method facilitates system adaptability in the event of hardware upgrades (e.g., antennas, ADCs) by reducing the need for extensive new data collection. This study demonstrates the potential of cGANs as a valuable tool for improving PD detection in CCs, leading to enhanced power system reliability and proactive maintenance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2024
ISBN
978-3-031-71114-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
246-260
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Bialystok Univ Technol
Datum konání akce
27. 8. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001322498600017