Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of Factors Affecting Electric Power Quality: PLS-SEM and Deep Learning Neural Network Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252681" target="_blank" >RIV/61989100:27240/23:10252681 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/10103865" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10103865</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3268037" target="_blank" >10.1109/ACCESS.2023.3268037</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of Factors Affecting Electric Power Quality: PLS-SEM and Deep Learning Neural Network Analysis

  • Popis výsledku v původním jazyce

    The world today is increasingly dependent directly or indirectly on the power system. Ensuring the quality of power supplied to electrical equipment is essential. The national regulatory framework is for harmonic mitigation in the global power system. This paper discusses the relationship between Efficiency (E), Security (S), and Reliability (R) for Electric Power Quality (EPQ). We measure the harmonic mitigation regulations listed in the IEEE 519 standard. To evaluate the proposed E, S, and R constructs and their relationship to EPQ, a multi-planning approach the method of Partial Least Squares-Structural Equation Modeling (PLS-SEM) and Deep Learning Artificial Neural Network (ANN) analysis were performed. In it, deep Learning Artificial Neural Network (ANN) was performed to complement the PLS-SEM findings and higher prediction accuracy. The study shows that the aspects of efficiency (E), security (S), and reliability (R) have a significant relationship with Electric Power Quality (EPQ). Another result of the study indicates that science, technology, engineering and math (STEM) resource conditions have a significant and positive impact on EPQ. Author

  • Název v anglickém jazyce

    Analysis of Factors Affecting Electric Power Quality: PLS-SEM and Deep Learning Neural Network Analysis

  • Popis výsledku anglicky

    The world today is increasingly dependent directly or indirectly on the power system. Ensuring the quality of power supplied to electrical equipment is essential. The national regulatory framework is for harmonic mitigation in the global power system. This paper discusses the relationship between Efficiency (E), Security (S), and Reliability (R) for Electric Power Quality (EPQ). We measure the harmonic mitigation regulations listed in the IEEE 519 standard. To evaluate the proposed E, S, and R constructs and their relationship to EPQ, a multi-planning approach the method of Partial Least Squares-Structural Equation Modeling (PLS-SEM) and Deep Learning Artificial Neural Network (ANN) analysis were performed. In it, deep Learning Artificial Neural Network (ANN) was performed to complement the PLS-SEM findings and higher prediction accuracy. The study shows that the aspects of efficiency (E), security (S), and reliability (R) have a significant relationship with Electric Power Quality (EPQ). Another result of the study indicates that science, technology, engineering and math (STEM) resource conditions have a significant and positive impact on EPQ. Author

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    23038234

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    1

  • Strana od-do

    1

  • Kód UT WoS článku

    001033183400001

  • EID výsledku v databázi Scopus

    2-s2.0-85153513381