Analysis of Factors Affecting Electric Power Quality: PLS-SEM and Deep Learning Neural Network Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252681" target="_blank" >RIV/61989100:27240/23:10252681 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10103865" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10103865</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3268037" target="_blank" >10.1109/ACCESS.2023.3268037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Factors Affecting Electric Power Quality: PLS-SEM and Deep Learning Neural Network Analysis
Popis výsledku v původním jazyce
The world today is increasingly dependent directly or indirectly on the power system. Ensuring the quality of power supplied to electrical equipment is essential. The national regulatory framework is for harmonic mitigation in the global power system. This paper discusses the relationship between Efficiency (E), Security (S), and Reliability (R) for Electric Power Quality (EPQ). We measure the harmonic mitigation regulations listed in the IEEE 519 standard. To evaluate the proposed E, S, and R constructs and their relationship to EPQ, a multi-planning approach the method of Partial Least Squares-Structural Equation Modeling (PLS-SEM) and Deep Learning Artificial Neural Network (ANN) analysis were performed. In it, deep Learning Artificial Neural Network (ANN) was performed to complement the PLS-SEM findings and higher prediction accuracy. The study shows that the aspects of efficiency (E), security (S), and reliability (R) have a significant relationship with Electric Power Quality (EPQ). Another result of the study indicates that science, technology, engineering and math (STEM) resource conditions have a significant and positive impact on EPQ. Author
Název v anglickém jazyce
Analysis of Factors Affecting Electric Power Quality: PLS-SEM and Deep Learning Neural Network Analysis
Popis výsledku anglicky
The world today is increasingly dependent directly or indirectly on the power system. Ensuring the quality of power supplied to electrical equipment is essential. The national regulatory framework is for harmonic mitigation in the global power system. This paper discusses the relationship between Efficiency (E), Security (S), and Reliability (R) for Electric Power Quality (EPQ). We measure the harmonic mitigation regulations listed in the IEEE 519 standard. To evaluate the proposed E, S, and R constructs and their relationship to EPQ, a multi-planning approach the method of Partial Least Squares-Structural Equation Modeling (PLS-SEM) and Deep Learning Artificial Neural Network (ANN) analysis were performed. In it, deep Learning Artificial Neural Network (ANN) was performed to complement the PLS-SEM findings and higher prediction accuracy. The study shows that the aspects of efficiency (E), security (S), and reliability (R) have a significant relationship with Electric Power Quality (EPQ). Another result of the study indicates that science, technology, engineering and math (STEM) resource conditions have a significant and positive impact on EPQ. Author
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
23038234
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
1
Strana od-do
1
Kód UT WoS článku
001033183400001
EID výsledku v databázi Scopus
2-s2.0-85153513381