Shallow and deep learning of an artificial neural network model describing a hot flow stress Evolution: A comparative study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F22%3A10250032" target="_blank" >RIV/61989100:27360/22:10250032 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000861662000001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000861662000001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matdes.2022.110880" target="_blank" >10.1016/j.matdes.2022.110880</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Shallow and deep learning of an artificial neural network model describing a hot flow stress Evolution: A comparative study
Popis výsledku v původním jazyce
In recent years, the utilization of artificial neural networks (ANNs) as regression models to solve the issue of hot flow stress forecasting has become a standard approach. In a connection with this kind of regression issue, employed ANNs are usually learned via a shallow learning technique while only limited attention has been paid to a deep learning method. In the frame of the submitted research, the shallow learning approach is thoroughly compared to the deep learning techniques which are based on the use of a Restricted Boltzmann Machine (RBM) and an Auto-Encoder (AE). To do so, these learning techniques are applied on a feed-forward multi-layer ANN describing the experimental hot flow curve dataset of micro-alloyed medium carbon steel. In comparison with the shallow learning method, both deep learning approaches provided higher accuracy in the network response - especially in the case of a higher number of hidden layers. The results have also shown that neither the RBM-based deep learning method nor the AE-based method had a significant effect on the duration of the necessary calculations. However, it turned out that the RBM-based method can, under certain conditions, lead to a more reliable network performance. (C) 2022 The Author(s). Published by Elsevier Ltd.
Název v anglickém jazyce
Shallow and deep learning of an artificial neural network model describing a hot flow stress Evolution: A comparative study
Popis výsledku anglicky
In recent years, the utilization of artificial neural networks (ANNs) as regression models to solve the issue of hot flow stress forecasting has become a standard approach. In a connection with this kind of regression issue, employed ANNs are usually learned via a shallow learning technique while only limited attention has been paid to a deep learning method. In the frame of the submitted research, the shallow learning approach is thoroughly compared to the deep learning techniques which are based on the use of a Restricted Boltzmann Machine (RBM) and an Auto-Encoder (AE). To do so, these learning techniques are applied on a feed-forward multi-layer ANN describing the experimental hot flow curve dataset of micro-alloyed medium carbon steel. In comparison with the shallow learning method, both deep learning approaches provided higher accuracy in the network response - especially in the case of a higher number of hidden layers. The results have also shown that neither the RBM-based deep learning method nor the AE-based method had a significant effect on the duration of the necessary calculations. However, it turned out that the RBM-based method can, under certain conditions, lead to a more reliable network performance. (C) 2022 The Author(s). Published by Elsevier Ltd.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008399" target="_blank" >EF17_049/0008399: Rozvoj mezisektorové spolupráce RMTVC s aplikační sférou v oblasti výzkumu progresivních a inovací klasických kovových materiálů a technologií s využitím metod modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials and Design
ISSN
0264-1275
e-ISSN
1873-4197
Svazek periodika
220
Číslo periodika v rámci svazku
110880
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
nestrankovano
Kód UT WoS článku
000861662000001
EID výsledku v databázi Scopus
2-s2.0-85132875961