Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep Learning Algorithms With an Application in Garments Quality Control

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F17%3A00004458" target="_blank" >RIV/46747885:24620/17:00004458 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.iecesaudi.com/all-papers.pdf" target="_blank" >http://www.iecesaudi.com/all-papers.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep Learning Algorithms With an Application in Garments Quality Control

  • Popis výsledku v původním jazyce

    Deep learning is a machine learning technique that utilizes many layers of non-linear transformations to extract features (in supervised or unsupervised manners) from the system’s input. This creates systems that process information more efficiently and capable of performing a wider range of operations for classification and pattern analysis purposes. The hierarchy in this technique with many (deep) layers sets its performance apart from the traditional machine learning techniques, such as the Artificial Neural Networks (ANN) that have "shallow architectures" based on one or two non-linear transformations. This work presents a case study for applying this technique, for the first time, in monitoring the quality control of garments and detecting their sewing defects. The introduced Artificial Intelligent (AI) system is based on reading the sewing line using a digital camera and processing the acquired images using the deep-learning algorithms. The system shows a great ability to transfer knowledge from pre-trained deep-networks to extract multiple features from the images and use these features in a successful classification of the sewing lines and highlighting the defected spots, if any. Results of this work opens the door for on-line detection systems that can work with higher efficiency, which should reduce the costs associated with salvaging defected garment products.

  • Název v anglickém jazyce

    Deep Learning Algorithms With an Application in Garments Quality Control

  • Popis výsledku anglicky

    Deep learning is a machine learning technique that utilizes many layers of non-linear transformations to extract features (in supervised or unsupervised manners) from the system’s input. This creates systems that process information more efficiently and capable of performing a wider range of operations for classification and pattern analysis purposes. The hierarchy in this technique with many (deep) layers sets its performance apart from the traditional machine learning techniques, such as the Artificial Neural Networks (ANN) that have "shallow architectures" based on one or two non-linear transformations. This work presents a case study for applying this technique, for the first time, in monitoring the quality control of garments and detecting their sewing defects. The introduced Artificial Intelligent (AI) system is based on reading the sewing line using a digital camera and processing the acquired images using the deep-learning algorithms. The system shows a great ability to transfer knowledge from pre-trained deep-networks to extract multiple features from the images and use these features in a successful classification of the sewing lines and highlighting the defected spots, if any. Results of this work opens the door for on-line detection systems that can work with higher efficiency, which should reduce the costs associated with salvaging defected garment products.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1201" target="_blank" >LO1201: ROZVOJ ÚSTAVU PRO NANOMATERIÁLY, POKROČILÉ TECHNOLOGIE A INOVACE TECHNICKÉ UNIVERZITY V LIBERCI</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů