Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F24%3A10256144" target="_blank" >RIV/61989100:27360/24:10256144 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85212550946&origin=resultslist" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85212550946&origin=resultslist</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmes.2024.055219" target="_blank" >10.32604/cmes.2024.055219</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials
Popis výsledku v původním jazyce
In engineering practice, it is often necessary to determine functional relationships between dependent and independent variables. These relationships can be highly nonlinear, and classical regression approaches cannot always provide sufficiently reliable solutions. Nevertheless, Machine Learning (ML) techniques, which offer advanced regression tools to address complicated engineering issues, have been developed and widely explored. This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials. The ML-based regression methods of Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Decision Tree Regression (DTR), and Gaussian Process Regression (GPR) are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel. Although the GPR method has not been used for such a regression task before, the results showed that its performance is the most favorable and practically unrivaled; neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
Název v anglickém jazyce
Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials
Popis výsledku anglicky
In engineering practice, it is often necessary to determine functional relationships between dependent and independent variables. These relationships can be highly nonlinear, and classical regression approaches cannot always provide sufficiently reliable solutions. Nevertheless, Machine Learning (ML) techniques, which offer advanced regression tools to address complicated engineering issues, have been developed and widely explored. This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials. The ML-based regression methods of Artificial Neural Networks (ANNs), Support Vector Machine (SVM), Decision Tree Regression (DTR), and Gaussian Process Regression (GPR) are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel. Although the GPR method has not been used for such a regression task before, the results showed that its performance is the most favorable and practically unrivaled; neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CMES - Computer Modeling in Engineering and Sciences
ISSN
1526-1492
e-ISSN
1526-1506
Svazek periodika
142
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
001351048500001
EID výsledku v databázi Scopus
—