Effects of sampling frequency on node mobility prediction in dynamic networks: A spectral view
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253497" target="_blank" >RIV/61989100:27240/23:10253497 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/23:10253497
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352864822000992" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352864822000992</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dcan.2022.05.008" target="_blank" >10.1016/j.dcan.2022.05.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of sampling frequency on node mobility prediction in dynamic networks: A spectral view
Popis výsledku v původním jazyce
The field of mobility prediction has been widely investigated in the recent past, especially the reduction of the coverage radius of cellular networks, which led to an increase in hand-over events. Changing the cell coverage very frequently, for example, may lead to service disruptions if a predictive approach is not deployed in the system. Although several works examined mobility prediction in the new-generation mobile networks, all of these studies focused on studying the time features of mobility traces, and the spectral content of historical mobility patterns was not considered for prediction purposes as yet. In the present study, we propose a new approach to mobility prediction by analyzing the effects of a proper mobility sampling frequency. The proposed approach lies in the mobility analysis in the frequency domain, to extract hidden features of the mobility process. Thus, we proposed a new methodology to determine the spectral content of mobility traces (considered as signals) and, thus, the appropriate sampling frequency, which can provide numerous advantages. We considered several types of mobility models (e.g. pedestrian, urban, and vehicular), containing important details in the time and frequency domains. Several simulation campaigns were performed to observe and analyze the characteristics of mobility from real traces and to evaluate the effects of sampling frequency on the spectral content. (C) 2022 Chongqing University of Posts and Telecommunications
Název v anglickém jazyce
Effects of sampling frequency on node mobility prediction in dynamic networks: A spectral view
Popis výsledku anglicky
The field of mobility prediction has been widely investigated in the recent past, especially the reduction of the coverage radius of cellular networks, which led to an increase in hand-over events. Changing the cell coverage very frequently, for example, may lead to service disruptions if a predictive approach is not deployed in the system. Although several works examined mobility prediction in the new-generation mobile networks, all of these studies focused on studying the time features of mobility traces, and the spectral content of historical mobility patterns was not considered for prediction purposes as yet. In the present study, we propose a new approach to mobility prediction by analyzing the effects of a proper mobility sampling frequency. The proposed approach lies in the mobility analysis in the frequency domain, to extract hidden features of the mobility process. Thus, we proposed a new methodology to determine the spectral content of mobility traces (considered as signals) and, thus, the appropriate sampling frequency, which can provide numerous advantages. We considered several types of mobility models (e.g. pedestrian, urban, and vehicular), containing important details in the time and frequency domains. Several simulation campaigns were performed to observe and analyze the characteristics of mobility from real traces and to evaluate the effects of sampling frequency on the spectral content. (C) 2022 Chongqing University of Posts and Telecommunications
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Digital Communications and Networks
ISSN
2468-5925
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
14
Strana od-do
1009-1022
Kód UT WoS článku
001075113800001
EID výsledku v databázi Scopus
2-s2.0-85165207896