Optimization of mobility sampling in dynamic networks using predictive wavelet analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255011" target="_blank" >RIV/61989100:27240/24:10255011 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10255011
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1574119224000130?dgcid=rss_sd_all" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1574119224000130?dgcid=rss_sd_all</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.pmcj.2024.101887" target="_blank" >10.1016/j.pmcj.2024.101887</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of mobility sampling in dynamic networks using predictive wavelet analysis
Popis výsledku v původním jazyce
In the last decade, the investigation of mobility features has gained enormous significance in many scenarios as a result of the significant diffusion and deployment of mobile devices covered by high-speed technologies (e.g., 5G). Many contributions in the literature have attempted to discover mobility properties, but most studies are based on the time features of the mobility process. No study has yet considered the effects of setting a proper sampling frequency (generally set to 1 s), in order to avoid information loss. Following our previous works, we propose a novel predictive spectral approach for mobility sampling based on the concept of a predictive wavelet. With this method, the choice of sampling frequency is governed by the current spectral components of the mobility process and derived from an analysis of future, predicted components. To assess whether our proposal may yield a helpful method, we conducted several simulation campaigns to test sampling accuracy and obtained results that confirmed our expectations. (C) 2024 The Author(s)
Název v anglickém jazyce
Optimization of mobility sampling in dynamic networks using predictive wavelet analysis
Popis výsledku anglicky
In the last decade, the investigation of mobility features has gained enormous significance in many scenarios as a result of the significant diffusion and deployment of mobile devices covered by high-speed technologies (e.g., 5G). Many contributions in the literature have attempted to discover mobility properties, but most studies are based on the time features of the mobility process. No study has yet considered the effects of setting a proper sampling frequency (generally set to 1 s), in order to avoid information loss. Following our previous works, we propose a novel predictive spectral approach for mobility sampling based on the concept of a predictive wavelet. With this method, the choice of sampling frequency is governed by the current spectral components of the mobility process and derived from an analysis of future, predicted components. To assess whether our proposal may yield a helpful method, we conducted several simulation campaigns to test sampling accuracy and obtained results that confirmed our expectations. (C) 2024 The Author(s)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pervasive and Mobile Computing
ISSN
1574-1192
e-ISSN
—
Svazek periodika
98
Číslo periodika v rámci svazku
FEB 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
001182614400001
EID výsledku v databázi Scopus
2-s2.0-85184010298