An Innovative Dynamic Mobility Sampling Scheme Based on Multiresolution Wavelet Analysis in IoT Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10249964" target="_blank" >RIV/61989100:27740/22:10249964 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/22:10249964
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9608980" target="_blank" >https://ieeexplore.ieee.org/document/9608980</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JIOT.2021.3126550" target="_blank" >10.1109/JIOT.2021.3126550</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Innovative Dynamic Mobility Sampling Scheme Based on Multiresolution Wavelet Analysis in IoT Networks
Popis výsledku v původním jazyce
Mobility is a key aspect of modern networking systems. To determine how to better manage the available resources, many architectures aim to a priori know the future positions of mobile nodes. This can be determined, for example, from mobile sensors in a smart city environment or wearable devices carried by pedestrians. If we consider infrastructure networks, frequently changing the coverage cell may lead to service disruptions if a predictive approach is not deployed in the system. All predictive systems are based on the storage of old mobility samples to adequately train the model. Our focus is based on the possibility to determine an approach for adaptively sampling mobility patterns based on the intrinsic features of the human/node behavior. Several works in the literature examine mobility prediction mobile networks, but all of them are dedicated to the study of time features in mobility traces: none took into account the spectral content of historical mobility patterns for predictive purposes. In contrast, we take into account this spectral content in mobility samples. Through a set of wavelet transforms, we adapted the sampling frequency dynamically and obtained a considerable set of advantages (space, energy, accuracy, etc.). In fact, this issue covers an important role in the IoT paradigm, where energy consumption is one of the main variables requiring optimization (frequent and unnecessary mobility samplings can disrupt battery life). We performed several simulations using real-world traces to confirm the merit of our proposal.
Název v anglickém jazyce
An Innovative Dynamic Mobility Sampling Scheme Based on Multiresolution Wavelet Analysis in IoT Networks
Popis výsledku anglicky
Mobility is a key aspect of modern networking systems. To determine how to better manage the available resources, many architectures aim to a priori know the future positions of mobile nodes. This can be determined, for example, from mobile sensors in a smart city environment or wearable devices carried by pedestrians. If we consider infrastructure networks, frequently changing the coverage cell may lead to service disruptions if a predictive approach is not deployed in the system. All predictive systems are based on the storage of old mobility samples to adequately train the model. Our focus is based on the possibility to determine an approach for adaptively sampling mobility patterns based on the intrinsic features of the human/node behavior. Several works in the literature examine mobility prediction mobile networks, but all of them are dedicated to the study of time features in mobility traces: none took into account the spectral content of historical mobility patterns for predictive purposes. In contrast, we take into account this spectral content in mobility samples. Through a set of wavelet transforms, we adapted the sampling frequency dynamically and obtained a considerable set of advantages (space, energy, accuracy, etc.). In fact, this issue covers an important role in the IoT paradigm, where energy consumption is one of the main variables requiring optimization (frequent and unnecessary mobility samplings can disrupt battery life). We performed several simulations using real-world traces to confirm the merit of our proposal.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Internet of Things Journal
ISSN
2327-4662
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
11336-11350
Kód UT WoS článku
000812536000078
EID výsledku v databázi Scopus
—