The PSR-Transformer Nexus: A Deep Dive into Stock Time Series Forecasting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10256317" target="_blank" >RIV/61989100:27240/23:10256317 - isvavai.cz</a>
Výsledek na webu
<a href="https://thesai.org/Publications/ViewPaper?Volume=14&Issue=12&Code=IJACSA&SerialNo=92" target="_blank" >https://thesai.org/Publications/ViewPaper?Volume=14&Issue=12&Code=IJACSA&SerialNo=92</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14569/IJACSA.2023.0141292" target="_blank" >10.14569/IJACSA.2023.0141292</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The PSR-Transformer Nexus: A Deep Dive into Stock Time Series Forecasting
Popis výsledku v původním jazyce
Accurate stock market forecasting has remained an elusive endeavor due to the inherent complexity of financial systems dynamics. While deep neural networks have shown initial promise, robustness concerns around long-term dependencies persist. This research pioneers a synergistic fusion of nonlinear time series analysis and algorithmic advances in representation learning to enhance predictive modeling. Phase space reconstruction provides a principled way to reconstruct multidimensional phase spaces from single variable measurements, elucidating dynamical evolution. Transformer networks with self -attention have recently propelled state-of-the-art results in sequence modeling tasks. This paper introduces PSR-Transformer Networks specifically tailored for stock forecasting by feeding PSR interpreted constructs to transformer encoders. Extensive empirical evaluation on 20 years of historical equities data demonstrates significant accuracy improvements along with enhanced robustness against LSTM, CNNLSTM and Transformer models. The proposed interdisciplinary fusion establishes new performance benchmarks on modeling financial time series, validating synergies between domain -specific reconstruction and cutting -edge deep learning.
Název v anglickém jazyce
The PSR-Transformer Nexus: A Deep Dive into Stock Time Series Forecasting
Popis výsledku anglicky
Accurate stock market forecasting has remained an elusive endeavor due to the inherent complexity of financial systems dynamics. While deep neural networks have shown initial promise, robustness concerns around long-term dependencies persist. This research pioneers a synergistic fusion of nonlinear time series analysis and algorithmic advances in representation learning to enhance predictive modeling. Phase space reconstruction provides a principled way to reconstruct multidimensional phase spaces from single variable measurements, elucidating dynamical evolution. Transformer networks with self -attention have recently propelled state-of-the-art results in sequence modeling tasks. This paper introduces PSR-Transformer Networks specifically tailored for stock forecasting by feeding PSR interpreted constructs to transformer encoders. Extensive empirical evaluation on 20 years of historical equities data demonstrates significant accuracy improvements along with enhanced robustness against LSTM, CNNLSTM and Transformer models. The proposed interdisciplinary fusion establishes new performance benchmarks on modeling financial time series, validating synergies between domain -specific reconstruction and cutting -edge deep learning.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International journal of advanced computer science and applications
ISSN
2158-107X
e-ISSN
2156-5570
Svazek periodika
14
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
917-924
Kód UT WoS článku
001244472600021
EID výsledku v databázi Scopus
—