Deep-learning Model Using Hybrid Adaptive Trend Estimated Series for Modelling and Forecasting Sales
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F24%3A39922243" target="_blank" >RIV/00216275:25410/24:39922243 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10479-022-04838-6" target="_blank" >https://link.springer.com/article/10.1007/s10479-022-04838-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10479-022-04838-6" target="_blank" >10.1007/s10479-022-04838-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep-learning Model Using Hybrid Adaptive Trend Estimated Series for Modelling and Forecasting Sales
Popis výsledku v původním jazyce
Existing sales forecasting models are not comprehensive and flexible enough to consider dynamic changes and nonlinearities in sales time-series at the store and product levels. To capture different big data characteristics in sales forecasting data, such as seasonal and trend variations, this study develops a hybrid model combining adaptive trend estimated series (ATES) with a deep neural network model. ATES is first used to model seasonal effects and incorporate holiday, weekend, and marketing effects on sales. The deep neural network model is then proposed to model residuals by capturing complex high-level spatiotemporal features from the data. The proposed hybrid model is equipped with a feature-extraction component that automatically detects the patterns and trends in time-series, which makes the forecasting model robust against noise and time-series length. To validate the proposed hybrid model, a large volume of sales data is processed with a three-dimensional data model to effectively support business decisions at the product-specific store level. To demonstrate the effectiveness of the proposed model, a comparative analysis is performed with several state-of-the-art sales forecasting methods. Here, we show that the proposed hybrid model outperforms existing models for forecasting horizons ranging from one to 12 months.
Název v anglickém jazyce
Deep-learning Model Using Hybrid Adaptive Trend Estimated Series for Modelling and Forecasting Sales
Popis výsledku anglicky
Existing sales forecasting models are not comprehensive and flexible enough to consider dynamic changes and nonlinearities in sales time-series at the store and product levels. To capture different big data characteristics in sales forecasting data, such as seasonal and trend variations, this study develops a hybrid model combining adaptive trend estimated series (ATES) with a deep neural network model. ATES is first used to model seasonal effects and incorporate holiday, weekend, and marketing effects on sales. The deep neural network model is then proposed to model residuals by capturing complex high-level spatiotemporal features from the data. The proposed hybrid model is equipped with a feature-extraction component that automatically detects the patterns and trends in time-series, which makes the forecasting model robust against noise and time-series length. To validate the proposed hybrid model, a large volume of sales data is processed with a three-dimensional data model to effectively support business decisions at the product-specific store level. To demonstrate the effectiveness of the proposed model, a comparative analysis is performed with several state-of-the-art sales forecasting methods. Here, we show that the proposed hybrid model outperforms existing models for forecasting horizons ranging from one to 12 months.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Operations Research
ISSN
0254-5330
e-ISSN
1572-9338
Svazek periodika
339
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
297-328
Kód UT WoS článku
000819683700001
EID výsledku v databázi Scopus
2-s2.0-85133272456