Suitable Models for Seasonal and Trend Time Series Forecasting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F15%3APU116615" target="_blank" >RIV/00216305:26510/15:PU116615 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.konference.fbm.vutbr.cz/ic/" target="_blank" >http://www.konference.fbm.vutbr.cz/ic/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Suitable Models for Seasonal and Trend Time Series Forecasting
Popis výsledku v původním jazyce
Purpose of the article is to compare suitable method for time series forecasting, especially the method of sea-sonal and trend time series decomposition and neural network prediction and use of methods defined by Box and Jenkins (Box-Jenkins models), such as ARIMA or SARIMA. For the analysis data from the area of wholesale trade with connecting material is used. Methodology/methods used in the paper consists of time series analysis, such as seasonal and trend decomposi-tion using time series adjustment from the effect of calendar variations, decomposition of multiplicative time-series model, prediction with neural networks and Box-Jenkins autoregressive integrated moving average mod-els. Last but not least it is worth noting deductive quantitative methods for research and data analysis using graphs. Scientific aim is to compare the effectiveness of traditional statistical models with artificial neural networks models. Autoregressive integrated moving average model is recently very popular linear method for time series prediction. Last research activities in forecasting with artificial neural networks show that the combination of time series decomposition and further prediction with artificial neural network can also be a suitable method for this purpose. Findings of the research show that artificial neural networks models can be a promising alternative to the tradi-tional linear models. Conclusions (limits, implications etc) resulting from the paper are beneficial for further research. The conducted research suggests methods of time series analysis and decomposition, artificial neural networks and Box-Jenkins models are suitable instruments for seasonal and trend time series forecasting. The article presents selected methods as very useful and bringing many opportunities for further research.
Název v anglickém jazyce
Suitable Models for Seasonal and Trend Time Series Forecasting
Popis výsledku anglicky
Purpose of the article is to compare suitable method for time series forecasting, especially the method of sea-sonal and trend time series decomposition and neural network prediction and use of methods defined by Box and Jenkins (Box-Jenkins models), such as ARIMA or SARIMA. For the analysis data from the area of wholesale trade with connecting material is used. Methodology/methods used in the paper consists of time series analysis, such as seasonal and trend decomposi-tion using time series adjustment from the effect of calendar variations, decomposition of multiplicative time-series model, prediction with neural networks and Box-Jenkins autoregressive integrated moving average mod-els. Last but not least it is worth noting deductive quantitative methods for research and data analysis using graphs. Scientific aim is to compare the effectiveness of traditional statistical models with artificial neural networks models. Autoregressive integrated moving average model is recently very popular linear method for time series prediction. Last research activities in forecasting with artificial neural networks show that the combination of time series decomposition and further prediction with artificial neural network can also be a suitable method for this purpose. Findings of the research show that artificial neural networks models can be a promising alternative to the tradi-tional linear models. Conclusions (limits, implications etc) resulting from the paper are beneficial for further research. The conducted research suggests methods of time series analysis and decomposition, artificial neural networks and Box-Jenkins models are suitable instruments for seasonal and trend time series forecasting. The article presents selected methods as very useful and bringing many opportunities for further research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50602 - Public administration
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Perspectives of Business and Entrepreneurship Development
ISBN
978-80-214-5227-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
422-429
Název nakladatele
Faculty of Business and Management, Brno University of Technology, 2015
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
28. 5. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000428947700042