Forecasting the consumption of plates in plants producing heavy plate cut shapes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F10%3A86076813" target="_blank" >RIV/61989100:27360/10:86076813 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting the consumption of plates in plants producing heavy plate cut shapes
Popis výsledku v původním jazyce
The paper is focused on search for suitable prediction models used for medium-term forecasting of the consumption of plates in plants producing heavy plate cut shapes. Demand time series for five product families, from the point of view of steel grade, have been assorted for this purpose. The time series include monthly demand data for the period from January 2007 to December 2009. Firstly, quantitative techniques based on time series analysis were used for the forecasting: simple moving average model with a multiplicative seasonal adjustment, Winter's exponential smoothing model and seasonal autoregressive integrated moving average (SARIMA) model. However, the application of these models is connected with two problems. First, time series are disruptedby the world crisis impacts. Second, time series does not affect the cycle component. That is why a prediction model using multilayer artificial neural network has been created.
Název v anglickém jazyce
Forecasting the consumption of plates in plants producing heavy plate cut shapes
Popis výsledku anglicky
The paper is focused on search for suitable prediction models used for medium-term forecasting of the consumption of plates in plants producing heavy plate cut shapes. Demand time series for five product families, from the point of view of steel grade, have been assorted for this purpose. The time series include monthly demand data for the period from January 2007 to December 2009. Firstly, quantitative techniques based on time series analysis were used for the forecasting: simple moving average model with a multiplicative seasonal adjustment, Winter's exponential smoothing model and seasonal autoregressive integrated moving average (SARIMA) model. However, the application of these models is connected with two problems. First, time series are disruptedby the world crisis impacts. Second, time series does not affect the cycle component. That is why a prediction model using multilayer artificial neural network has been created.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
METAL 2010
ISBN
978-80-87294-17-8
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
TANGER s.r.o. Ostrava
Místo vydání
Rožnov pod Radhoštěm
Místo konání akce
Rožnov pod Radhoštěm
Datum konání akce
18. 5. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—