On the Forecastability of Solar Energy Generation by Rooftop Panels Pointed in Different Directions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254572" target="_blank" >RIV/61989100:27240/24:10254572 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10169105" target="_blank" >https://ieeexplore.ieee.org/document/10169105</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSTE.2023.3291212" target="_blank" >10.1109/TSTE.2023.3291212</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Forecastability of Solar Energy Generation by Rooftop Panels Pointed in Different Directions
Popis výsledku v původním jazyce
By increasing the penetration of small-scale rooftop solar panels, forecasting their output has become important to both homeowners and distribution systems operators. In many areas, the roof of residential houses is not such that all solar panels are installed pointing in one direction; so, they are installed pointing in different directions. In this letter, the effect of this phenomenon on the forecastability of the day-ahead solar panels' power output is experimentally investigated. To perform day-ahead energy forecasting, a feedforward artificial neural network (ANN) is created using historical data and weather conditions of a similar day along with the forecast weather conditions of the day for which the forecast is to be performed. A similar day selection algorithm based on Euclidean distance is used to determine the reference day. Two forecasting approaches have been compared: forecasting each panel output and forecasting the total output. Moreover, Long short-term memory (LSTM) is used to validate the conclusion made by the feedforward ANN. The results evidently show that considering different directions of the solar panels increases the forecastability of the rooftop solar power plant.
Název v anglickém jazyce
On the Forecastability of Solar Energy Generation by Rooftop Panels Pointed in Different Directions
Popis výsledku anglicky
By increasing the penetration of small-scale rooftop solar panels, forecasting their output has become important to both homeowners and distribution systems operators. In many areas, the roof of residential houses is not such that all solar panels are installed pointing in one direction; so, they are installed pointing in different directions. In this letter, the effect of this phenomenon on the forecastability of the day-ahead solar panels' power output is experimentally investigated. To perform day-ahead energy forecasting, a feedforward artificial neural network (ANN) is created using historical data and weather conditions of a similar day along with the forecast weather conditions of the day for which the forecast is to be performed. A similar day selection algorithm based on Euclidean distance is used to determine the reference day. Two forecasting approaches have been compared: forecasting each panel output and forecasting the total output. Moreover, Long short-term memory (LSTM) is used to validate the conclusion made by the feedforward ANN. The results evidently show that considering different directions of the solar panels increases the forecastability of the rooftop solar power plant.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Sustainable Energy
ISSN
1949-3029
e-ISSN
1949-3037
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
4
Strana od-do
699-702
Kód UT WoS článku
001133194500007
EID výsledku v databázi Scopus
2-s2.0-85163757636