Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Support Vector Regression of multiple predictive models of downward short-wave radiation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092658" target="_blank" >RIV/61989100:27240/14:86092658 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/14:00429748

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/IJCNN.2014.6889812" target="_blank" >http://dx.doi.org/10.1109/IJCNN.2014.6889812</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2014.6889812" target="_blank" >10.1109/IJCNN.2014.6889812</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Support Vector Regression of multiple predictive models of downward short-wave radiation

  • Popis výsledku v původním jazyce

    Accurate forecasts of weather conditions are of the utmost importance for the management and operation of renewable energy sources with intermittent (stochastic) production. With the growing amount of intermittent energy sources, the need for precise weather predictions increases. Production of energy from renewable power sources, such as wind and solar, can be predicted using numerical weather prediction models. These models can provide high-resolution, localized forecast of wind speed and solar irradiation. However, different instances of numerical weather prediction models may provide different forecasts, depending on their properties and parameterizations. To alleviate this problem, it is possible to employ multiple models and to combine their outputs to obtain more accurate localized forecasts. This work uses the machine-learning tool of Support Vector Regression to amalgamate downward short-wave radiation forecasts of several numerical weather prediction models. Results of SVR-ba

  • Název v anglickém jazyce

    Support Vector Regression of multiple predictive models of downward short-wave radiation

  • Popis výsledku anglicky

    Accurate forecasts of weather conditions are of the utmost importance for the management and operation of renewable energy sources with intermittent (stochastic) production. With the growing amount of intermittent energy sources, the need for precise weather predictions increases. Production of energy from renewable power sources, such as wind and solar, can be predicted using numerical weather prediction models. These models can provide high-resolution, localized forecast of wind speed and solar irradiation. However, different instances of numerical weather prediction models may provide different forecasts, depending on their properties and parameterizations. To alleviate this problem, it is possible to employ multiple models and to combine their outputs to obtain more accurate localized forecasts. This work uses the machine-learning tool of Support Vector Regression to amalgamate downward short-wave radiation forecasts of several numerical weather prediction models. Results of SVR-ba

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LD12009" target="_blank" >LD12009: Pokročilé metody pro predikci výroby elektrické energie z fotovoltaických systémů s využitím numerických modelů počasí s vysokým prostorovým i časovým rozlišením</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the International Joint Conference on Neural Networks

  • ISBN

    978-1-4799-1484-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    651-657

  • Název nakladatele

    Institute of Electrical and Electronics Engineers

  • Místo vydání

    New York

  • Místo konání akce

    Beijing

  • Datum konání akce

    6. 7. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku