Robust PRESB Preconditioning of a 3-Dimensional Space-Time Finite Element Method for Parabolic Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254836" target="_blank" >RIV/61989100:27240/24:10254836 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10254836
Výsledek na webu
<a href="http://homel.vsb.cz/~luk76" target="_blank" >http://homel.vsb.cz/~luk76</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/cmam-2023-0085" target="_blank" >10.1515/cmam-2023-0085</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust PRESB Preconditioning of a 3-Dimensional Space-Time Finite Element Method for Parabolic Problems
Popis výsledku v původním jazyce
We present a recently developed preconditioning of square block matrices (PRESB) to be used within a parallel method to solve linear systems of equations arising from tensor-product discretizations of initial boundary-value problems for parabolic partial differential equations. We consider weak formulations in Bochner-Sobolev spaces and tensor-product finite element approximations for the heat and eddy current equations. The fast diagonalization method is employed to decouple the arising linear system of equations into auxiliary spatial complex-valued linear systems that can be solved concurrently. We prove that the real part of the system matrix is positive definite, which allows us to accelerate the flexible generalized minimal residual method (FGMRES) by the PRESB preconditioner. The action of PRESB on a vector includes two solutions with positive definite matrices. The spectrum of the preconditioned system lies between 1/2 and 1. Finally, we combine the PRESB-FGMRES method with multigrid-CG iterations and illustrate the numerical efficiency and the robustness for spatial discretizations up to 12 millions degrees of freedom.
Název v anglickém jazyce
Robust PRESB Preconditioning of a 3-Dimensional Space-Time Finite Element Method for Parabolic Problems
Popis výsledku anglicky
We present a recently developed preconditioning of square block matrices (PRESB) to be used within a parallel method to solve linear systems of equations arising from tensor-product discretizations of initial boundary-value problems for parabolic partial differential equations. We consider weak formulations in Bochner-Sobolev spaces and tensor-product finite element approximations for the heat and eddy current equations. The fast diagonalization method is employed to decouple the arising linear system of equations into auxiliary spatial complex-valued linear systems that can be solved concurrently. We prove that the real part of the system matrix is positive definite, which allows us to accelerate the flexible generalized minimal residual method (FGMRES) by the PRESB preconditioner. The action of PRESB on a vector includes two solutions with positive definite matrices. The spectrum of the preconditioned system lies between 1/2 and 1. Finally, we combine the PRESB-FGMRES method with multigrid-CG iterations and illustrate the numerical efficiency and the robustness for spatial discretizations up to 12 millions degrees of freedom.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Methods in Applied Mathematics
ISSN
1609-4840
e-ISSN
1609-9389
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
431-443
Kód UT WoS článku
001152115000001
EID výsledku v databázi Scopus
—