Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Next-cell and mobility prediction in new generation cellular systems based on convolutional neural networks and encoding mobility data as images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255255" target="_blank" >RIV/61989100:27240/24:10255255 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/24:10255255

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1389128624004894?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1389128624004894?pes=vor</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.comnet.2024.110657" target="_blank" >10.1016/j.comnet.2024.110657</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Next-cell and mobility prediction in new generation cellular systems based on convolutional neural networks and encoding mobility data as images

  • Popis výsledku v původním jazyce

    Mobility prediction has been a popular research topic for many decades. With the advent of new generation technologies (5G and beyond) and smaller coverage cells, hand-over operations have become more frequent. Cellular system companies are therefore taking increasing interest in using the available predictive information on node movements to optimize and manage their bandwidth resources. In particular, the main challenging scope of our contribution consists in solving the issue of reliable next-cell prediction, aimed to call dropping probability minimization. In addition, our proposal is based on the innovative concept of mobility data to image encoding. The scheme is able to a-priori determine the next visited cells during host movements by applying a convolutional neural approach to mobility images. The power of machine learning is used to advantage, and highly accurate image classification is achieved for mobility prediction. We performed numerous simulation campaigns related to next-cell prediction in mobile cellular environments, obtaining very satisfactory results by the application of convolutional neural networks, which have an impressive history of effectiveness with image classification problems. The trained network has been associated to each coverage cell and the prediction accuracy has been evaluated.

  • Název v anglickém jazyce

    Next-cell and mobility prediction in new generation cellular systems based on convolutional neural networks and encoding mobility data as images

  • Popis výsledku anglicky

    Mobility prediction has been a popular research topic for many decades. With the advent of new generation technologies (5G and beyond) and smaller coverage cells, hand-over operations have become more frequent. Cellular system companies are therefore taking increasing interest in using the available predictive information on node movements to optimize and manage their bandwidth resources. In particular, the main challenging scope of our contribution consists in solving the issue of reliable next-cell prediction, aimed to call dropping probability minimization. In addition, our proposal is based on the innovative concept of mobility data to image encoding. The scheme is able to a-priori determine the next visited cells during host movements by applying a convolutional neural approach to mobility images. The power of machine learning is used to advantage, and highly accurate image classification is achieved for mobility prediction. We performed numerous simulation campaigns related to next-cell prediction in mobile cellular environments, obtaining very satisfactory results by the application of convolutional neural networks, which have an impressive history of effectiveness with image classification problems. The trained network has been associated to each coverage cell and the prediction accuracy has been evaluated.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Networks

  • ISSN

    1389-1286

  • e-ISSN

    1872-7069

  • Svazek periodika

    252

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    1-16

  • Kód UT WoS článku

    001284294000001

  • EID výsledku v databázi Scopus

    2-s2.0-85199770152