Next-cell and mobility prediction in new generation cellular systems based on convolutional neural networks and encoding mobility data as images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255255" target="_blank" >RIV/61989100:27240/24:10255255 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10255255
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1389128624004894?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1389128624004894?pes=vor</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comnet.2024.110657" target="_blank" >10.1016/j.comnet.2024.110657</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Next-cell and mobility prediction in new generation cellular systems based on convolutional neural networks and encoding mobility data as images
Popis výsledku v původním jazyce
Mobility prediction has been a popular research topic for many decades. With the advent of new generation technologies (5G and beyond) and smaller coverage cells, hand-over operations have become more frequent. Cellular system companies are therefore taking increasing interest in using the available predictive information on node movements to optimize and manage their bandwidth resources. In particular, the main challenging scope of our contribution consists in solving the issue of reliable next-cell prediction, aimed to call dropping probability minimization. In addition, our proposal is based on the innovative concept of mobility data to image encoding. The scheme is able to a-priori determine the next visited cells during host movements by applying a convolutional neural approach to mobility images. The power of machine learning is used to advantage, and highly accurate image classification is achieved for mobility prediction. We performed numerous simulation campaigns related to next-cell prediction in mobile cellular environments, obtaining very satisfactory results by the application of convolutional neural networks, which have an impressive history of effectiveness with image classification problems. The trained network has been associated to each coverage cell and the prediction accuracy has been evaluated.
Název v anglickém jazyce
Next-cell and mobility prediction in new generation cellular systems based on convolutional neural networks and encoding mobility data as images
Popis výsledku anglicky
Mobility prediction has been a popular research topic for many decades. With the advent of new generation technologies (5G and beyond) and smaller coverage cells, hand-over operations have become more frequent. Cellular system companies are therefore taking increasing interest in using the available predictive information on node movements to optimize and manage their bandwidth resources. In particular, the main challenging scope of our contribution consists in solving the issue of reliable next-cell prediction, aimed to call dropping probability minimization. In addition, our proposal is based on the innovative concept of mobility data to image encoding. The scheme is able to a-priori determine the next visited cells during host movements by applying a convolutional neural approach to mobility images. The power of machine learning is used to advantage, and highly accurate image classification is achieved for mobility prediction. We performed numerous simulation campaigns related to next-cell prediction in mobile cellular environments, obtaining very satisfactory results by the application of convolutional neural networks, which have an impressive history of effectiveness with image classification problems. The trained network has been associated to each coverage cell and the prediction accuracy has been evaluated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Networks
ISSN
1389-1286
e-ISSN
1872-7069
Svazek periodika
252
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
001284294000001
EID výsledku v databázi Scopus
2-s2.0-85199770152