Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Explainable AI and optimized solar power generation forecasting model based on environmental conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256319" target="_blank" >RIV/61989100:27240/24:10256319 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308002" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0308002" target="_blank" >10.1371/journal.pone.0308002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Explainable AI and optimized solar power generation forecasting model based on environmental conditions

  • Popis výsledku v původním jazyce

    This paper proposes a model called X-LSTM-EO, which integrates explainable artificial intelligence (XAI), long short-term memory (LSTM), and equilibrium optimizer (EO) to reliably forecast solar power generation. The LSTM component forecasts power generation rates based on environmental conditions, while the EO component optimizes the LSTM model&apos;s hyper-parameters through training. The XAI-based Local Interpretable and Model-independent Explanation (LIME) is adapted to identify the critical factors that influence the accuracy of the power generation forecasts model in smart solar systems. The effectiveness of the proposed X-LSTM-EO model is evaluated through the use of five metrics; R-squared (R2), root mean square error (RMSE), coefficient of variation (COV), mean absolute error (MAE), and efficiency coefficient (EC). The proposed model gains values 0.99, 0.46, 0.35, 0.229, and 0.95, for R2, RMSE, COV, MAE, and EC respectively. The results of this paper improve the performance of the original model&apos;s conventional LSTM, where the improvement rate is; 148%, 21%, 27%, 20%, 134% for R2, RMSE, COV, MAE, and EC respectively. The performance of LSTM is compared with other machine learning algorithm such as Decision tree (DT), Linear regression (LR) and Gradient Boosting. It was shown that the LSTM model worked better than DT and LR when the results were compared. Additionally, the PSO optimizer was employed instead of the EO optimizer to validate the outcomes, which further demonstrated the efficacy of the EO optimizer. The experimental results and simulations demonstrate that the proposed model can accurately estimate PV power generation in response to abrupt changes in power generation patterns. Moreover, the proposed model might assist in optimizing the operations of photovoltaic power units. The proposed model is implemented utilizing TensorFlow and Keras within the Google Collab environment.

  • Název v anglickém jazyce

    Explainable AI and optimized solar power generation forecasting model based on environmental conditions

  • Popis výsledku anglicky

    This paper proposes a model called X-LSTM-EO, which integrates explainable artificial intelligence (XAI), long short-term memory (LSTM), and equilibrium optimizer (EO) to reliably forecast solar power generation. The LSTM component forecasts power generation rates based on environmental conditions, while the EO component optimizes the LSTM model&apos;s hyper-parameters through training. The XAI-based Local Interpretable and Model-independent Explanation (LIME) is adapted to identify the critical factors that influence the accuracy of the power generation forecasts model in smart solar systems. The effectiveness of the proposed X-LSTM-EO model is evaluated through the use of five metrics; R-squared (R2), root mean square error (RMSE), coefficient of variation (COV), mean absolute error (MAE), and efficiency coefficient (EC). The proposed model gains values 0.99, 0.46, 0.35, 0.229, and 0.95, for R2, RMSE, COV, MAE, and EC respectively. The results of this paper improve the performance of the original model&apos;s conventional LSTM, where the improvement rate is; 148%, 21%, 27%, 20%, 134% for R2, RMSE, COV, MAE, and EC respectively. The performance of LSTM is compared with other machine learning algorithm such as Decision tree (DT), Linear regression (LR) and Gradient Boosting. It was shown that the LSTM model worked better than DT and LR when the results were compared. Additionally, the PSO optimizer was employed instead of the EO optimizer to validate the outcomes, which further demonstrated the efficacy of the EO optimizer. The experimental results and simulations demonstrate that the proposed model can accurately estimate PV power generation in response to abrupt changes in power generation patterns. Moreover, the proposed model might assist in optimizing the operations of photovoltaic power units. The proposed model is implemented utilizing TensorFlow and Keras within the Google Collab environment.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    33

  • Strana od-do

  • Kód UT WoS článku

    001326970300023

  • EID výsledku v databázi Scopus