Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Collaborative filtering by graph convolution network in location-based recommendation system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256808" target="_blank" >RIV/61989100:27240/24:10256808 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://itiis.org/digital-library/100957" target="_blank" >https://itiis.org/digital-library/100957</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3837/tiis.2024.07.008" target="_blank" >10.3837/tiis.2024.07.008</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Collaborative filtering by graph convolution network in location-based recommendation system

  • Popis výsledku v původním jazyce

    Recommendation systems research is a subfield of information retrieval, as these systems recommend appropriate items to users during their visits. Appropriate recommendation results will help users save time searching while increasing productivity at work, travel, or shopping. The problem becomes more difficult when the items are geographical locations on the ground, as they are associated with a wealth of contextual information, such as geographical location, opening time, and sequence of related locations. Furthermore, on social networking platforms that allow users to check in or express interest when visiting a specific location, their friends receive this signal by spreading the word on that online social network. Consideration should be given to relationship data extracted from online social networking platforms, as well as their impact on the geolocation recommendation process. In this study, we compare the similarity of geographic locations based on their distance on the ground and their correlation with users who have checked in at those locations. When calculating feature embeddings for users and locations, social relationships are also considered as attention signals. The similarity value between location and correlation between users will be exploited in the overall architecture of the recommendation model, which will employ graph convolution networks to generate recommendations with high precision and recall. The proposed model is implemented and executed on popular datasets, then compared to baseline models to assess its overall effectiveness. Copyright © 2024 KSII.

  • Název v anglickém jazyce

    Collaborative filtering by graph convolution network in location-based recommendation system

  • Popis výsledku anglicky

    Recommendation systems research is a subfield of information retrieval, as these systems recommend appropriate items to users during their visits. Appropriate recommendation results will help users save time searching while increasing productivity at work, travel, or shopping. The problem becomes more difficult when the items are geographical locations on the ground, as they are associated with a wealth of contextual information, such as geographical location, opening time, and sequence of related locations. Furthermore, on social networking platforms that allow users to check in or express interest when visiting a specific location, their friends receive this signal by spreading the word on that online social network. Consideration should be given to relationship data extracted from online social networking platforms, as well as their impact on the geolocation recommendation process. In this study, we compare the similarity of geographic locations based on their distance on the ground and their correlation with users who have checked in at those locations. When calculating feature embeddings for users and locations, social relationships are also considered as attention signals. The similarity value between location and correlation between users will be exploited in the overall architecture of the recommendation model, which will employ graph convolution networks to generate recommendations with high precision and recall. The proposed model is implemented and executed on popular datasets, then compared to baseline models to assess its overall effectiveness. Copyright © 2024 KSII.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    KSII Transactions on Internet and Information Systems

  • ISSN

    1976-7277

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    KR - Korejská republika

  • Počet stran výsledku

    20

  • Strana od-do

    1868-1887

  • Kód UT WoS článku

    001282381200006

  • EID výsledku v databázi Scopus

    2-s2.0-85200265846