Federated-Reinforcement Learning-Assisted IoT Consumers System for Kidney Disease Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257216" target="_blank" >RIV/61989100:27240/24:10257216 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490143" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490143</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCE.2024.3384455" target="_blank" >10.1109/TCE.2024.3384455</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Federated-Reinforcement Learning-Assisted IoT Consumers System for Kidney Disease Images
Popis výsledku v původním jazyce
The number of people with kidney disease rises every day for many reasons. Many existing machine-learning-enabled mechanisms for processing kidney disease suffer from long delays and consume much more resources during processing. In this paper, the study shows how federated and reinforcement learning schemes can be used to develop the best delay scheme. The scheme must optimize both the internal and external states of reinforcement learning and the federated learning fog cloud network. This work presents the Adaptive Federated Reinforcement Learning-Enabled System (AFRLS) for Internet of Things (IoT) consumers’ kidney disease image processing. The main relationship between IoT consumers and kidney image is that the data is collected from different IoT consumer sources, such as ultrasound and X-rays in healthcare clinics. In healthcare applications, kidney urinary tasks reduce the time it takes to preprocess federated learning datasets for training and testing and run them on different fog and cloud nodes. AFRLS decides the scheduling on other nodes and improves constraints based on the decision tree. Based on the simulation results, AFRLS is a new strategy that reduces the time tasks need to be delayed compared to other machine learning methods used in fog cloud networks. The AFRLS improved the delay among nodes by 55%, the delay among internal states by 40%, and the training and testing delay by 51%. Authors
Název v anglickém jazyce
Federated-Reinforcement Learning-Assisted IoT Consumers System for Kidney Disease Images
Popis výsledku anglicky
The number of people with kidney disease rises every day for many reasons. Many existing machine-learning-enabled mechanisms for processing kidney disease suffer from long delays and consume much more resources during processing. In this paper, the study shows how federated and reinforcement learning schemes can be used to develop the best delay scheme. The scheme must optimize both the internal and external states of reinforcement learning and the federated learning fog cloud network. This work presents the Adaptive Federated Reinforcement Learning-Enabled System (AFRLS) for Internet of Things (IoT) consumers’ kidney disease image processing. The main relationship between IoT consumers and kidney image is that the data is collected from different IoT consumer sources, such as ultrasound and X-rays in healthcare clinics. In healthcare applications, kidney urinary tasks reduce the time it takes to preprocess federated learning datasets for training and testing and run them on different fog and cloud nodes. AFRLS decides the scheduling on other nodes and improves constraints based on the decision tree. Based on the simulation results, AFRLS is a new strategy that reduces the time tasks need to be delayed compared to other machine learning methods used in fog cloud networks. The AFRLS improved the delay among nodes by 55%, the delay among internal states by 40%, and the training and testing delay by 51%. Authors
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Consumer Electronics
ISSN
0098-3063
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
7163-7173
Kód UT WoS článku
001389542800030
EID výsledku v databázi Scopus
2-s2.0-85189650023