Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Federated-Reinforcement Learning-Assisted IoT Consumers System for Kidney Disease Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257216" target="_blank" >RIV/61989100:27240/24:10257216 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490143" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490143</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TCE.2024.3384455" target="_blank" >10.1109/TCE.2024.3384455</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Federated-Reinforcement Learning-Assisted IoT Consumers System for Kidney Disease Images

  • Popis výsledku v původním jazyce

    The number of people with kidney disease rises every day for many reasons. Many existing machine-learning-enabled mechanisms for processing kidney disease suffer from long delays and consume much more resources during processing. In this paper, the study shows how federated and reinforcement learning schemes can be used to develop the best delay scheme. The scheme must optimize both the internal and external states of reinforcement learning and the federated learning fog cloud network. This work presents the Adaptive Federated Reinforcement Learning-Enabled System (AFRLS) for Internet of Things (IoT) consumers’ kidney disease image processing. The main relationship between IoT consumers and kidney image is that the data is collected from different IoT consumer sources, such as ultrasound and X-rays in healthcare clinics. In healthcare applications, kidney urinary tasks reduce the time it takes to preprocess federated learning datasets for training and testing and run them on different fog and cloud nodes. AFRLS decides the scheduling on other nodes and improves constraints based on the decision tree. Based on the simulation results, AFRLS is a new strategy that reduces the time tasks need to be delayed compared to other machine learning methods used in fog cloud networks. The AFRLS improved the delay among nodes by 55%, the delay among internal states by 40%, and the training and testing delay by 51%. Authors

  • Název v anglickém jazyce

    Federated-Reinforcement Learning-Assisted IoT Consumers System for Kidney Disease Images

  • Popis výsledku anglicky

    The number of people with kidney disease rises every day for many reasons. Many existing machine-learning-enabled mechanisms for processing kidney disease suffer from long delays and consume much more resources during processing. In this paper, the study shows how federated and reinforcement learning schemes can be used to develop the best delay scheme. The scheme must optimize both the internal and external states of reinforcement learning and the federated learning fog cloud network. This work presents the Adaptive Federated Reinforcement Learning-Enabled System (AFRLS) for Internet of Things (IoT) consumers’ kidney disease image processing. The main relationship between IoT consumers and kidney image is that the data is collected from different IoT consumer sources, such as ultrasound and X-rays in healthcare clinics. In healthcare applications, kidney urinary tasks reduce the time it takes to preprocess federated learning datasets for training and testing and run them on different fog and cloud nodes. AFRLS decides the scheduling on other nodes and improves constraints based on the decision tree. Based on the simulation results, AFRLS is a new strategy that reduces the time tasks need to be delayed compared to other machine learning methods used in fog cloud networks. The AFRLS improved the delay among nodes by 55%, the delay among internal states by 40%, and the training and testing delay by 51%. Authors

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Consumer Electronics

  • ISSN

    0098-3063

  • e-ISSN

  • Svazek periodika

    70

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    7163-7173

  • Kód UT WoS článku

    001389542800030

  • EID výsledku v databázi Scopus

    2-s2.0-85189650023