Land cover classification using sentinel-1 SAR data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F19%3A10251611" target="_blank" >RIV/61989100:27350/19:10251611 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8870125" target="_blank" >https://ieeexplore.ieee.org/document/8870125</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MILTECHS.2019.8870125" target="_blank" >10.1109/MILTECHS.2019.8870125</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Land cover classification using sentinel-1 SAR data
Popis výsledku v původním jazyce
With the development of remote sensing techniques, optical images become more efficient compare to field survey. However, the quality of optical images would influenced by cloud. Radar is known to be very sensitive to vegetation physiognomy and biomass. The sensitivity of synthetic aperture radar (SAR) to the structural features of terrain leads to landcover classification into simple and easily interpreted structural classes. In this paper, the potential of using free of charge Sentinel-1 SAR imagery for land cover mapping in the Moravian-Silesian region, is investigated. The images recorded in 2018 were used for a per-pixel and object-based classification of agricultural land. The per-pixel classification was performed by the maximum likelihood algorithm, the object-based classification then using the support vector machine algorithm. The legend was taken from the Land Parcel Identification System (LPIS) and contained the following three classes - grassland, arable land and a class that involves hop fields, vineyards, and orchards. Post processing of the classification results has been done using the confusion matrix (also known as error matrix) and corresponding overall accuracy and Kappa coefficients of all the classification methods have been calculated. Significantly better results were achieved through object-oriented classification. In both areas of interest, the highest processing and user precision was achieved for the arable land class. (C) 2019 IEEE.
Název v anglickém jazyce
Land cover classification using sentinel-1 SAR data
Popis výsledku anglicky
With the development of remote sensing techniques, optical images become more efficient compare to field survey. However, the quality of optical images would influenced by cloud. Radar is known to be very sensitive to vegetation physiognomy and biomass. The sensitivity of synthetic aperture radar (SAR) to the structural features of terrain leads to landcover classification into simple and easily interpreted structural classes. In this paper, the potential of using free of charge Sentinel-1 SAR imagery for land cover mapping in the Moravian-Silesian region, is investigated. The images recorded in 2018 were used for a per-pixel and object-based classification of agricultural land. The per-pixel classification was performed by the maximum likelihood algorithm, the object-based classification then using the support vector machine algorithm. The legend was taken from the Land Parcel Identification System (LPIS) and contained the following three classes - grassland, arable land and a class that involves hop fields, vineyards, and orchards. Post processing of the classification results has been done using the confusion matrix (also known as error matrix) and corresponding overall accuracy and Kappa coefficients of all the classification methods have been calculated. Significantly better results were achieved through object-oriented classification. In both areas of interest, the highest processing and user precision was achieved for the arable land class. (C) 2019 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICMT 2019 - 7th International Conference on Military Technologies, Proceedings
ISBN
978-1-72814-593-8
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Brno
Datum konání akce
30. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—