Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Land cover classification using sentinel-1 SAR data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F19%3A10251611" target="_blank" >RIV/61989100:27350/19:10251611 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8870125" target="_blank" >https://ieeexplore.ieee.org/document/8870125</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MILTECHS.2019.8870125" target="_blank" >10.1109/MILTECHS.2019.8870125</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Land cover classification using sentinel-1 SAR data

  • Popis výsledku v původním jazyce

    With the development of remote sensing techniques, optical images become more efficient compare to field survey. However, the quality of optical images would influenced by cloud. Radar is known to be very sensitive to vegetation physiognomy and biomass. The sensitivity of synthetic aperture radar (SAR) to the structural features of terrain leads to landcover classification into simple and easily interpreted structural classes. In this paper, the potential of using free of charge Sentinel-1 SAR imagery for land cover mapping in the Moravian-Silesian region, is investigated. The images recorded in 2018 were used for a per-pixel and object-based classification of agricultural land. The per-pixel classification was performed by the maximum likelihood algorithm, the object-based classification then using the support vector machine algorithm. The legend was taken from the Land Parcel Identification System (LPIS) and contained the following three classes - grassland, arable land and a class that involves hop fields, vineyards, and orchards. Post processing of the classification results has been done using the confusion matrix (also known as error matrix) and corresponding overall accuracy and Kappa coefficients of all the classification methods have been calculated. Significantly better results were achieved through object-oriented classification. In both areas of interest, the highest processing and user precision was achieved for the arable land class. (C) 2019 IEEE.

  • Název v anglickém jazyce

    Land cover classification using sentinel-1 SAR data

  • Popis výsledku anglicky

    With the development of remote sensing techniques, optical images become more efficient compare to field survey. However, the quality of optical images would influenced by cloud. Radar is known to be very sensitive to vegetation physiognomy and biomass. The sensitivity of synthetic aperture radar (SAR) to the structural features of terrain leads to landcover classification into simple and easily interpreted structural classes. In this paper, the potential of using free of charge Sentinel-1 SAR imagery for land cover mapping in the Moravian-Silesian region, is investigated. The images recorded in 2018 were used for a per-pixel and object-based classification of agricultural land. The per-pixel classification was performed by the maximum likelihood algorithm, the object-based classification then using the support vector machine algorithm. The legend was taken from the Land Parcel Identification System (LPIS) and contained the following three classes - grassland, arable land and a class that involves hop fields, vineyards, and orchards. Post processing of the classification results has been done using the confusion matrix (also known as error matrix) and corresponding overall accuracy and Kappa coefficients of all the classification methods have been calculated. Significantly better results were achieved through object-oriented classification. In both areas of interest, the highest processing and user precision was achieved for the arable land class. (C) 2019 IEEE.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICMT 2019 - 7th International Conference on Military Technologies, Proceedings

  • ISBN

    978-1-72814-593-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Brno

  • Datum konání akce

    30. 5. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku