In-store Customer Shopping Behavior Analysis by Utilizing RFID-enabled Shelf and Multilayer Perceptron Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F20%3A10245022" target="_blank" >RIV/61989100:27350/20:10245022 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1757-899X/803/1/012022" target="_blank" >https://iopscience.iop.org/article/10.1088/1757-899X/803/1/012022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1757-899X/803/1/012022" target="_blank" >10.1088/1757-899X/803/1/012022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
In-store Customer Shopping Behavior Analysis by Utilizing RFID-enabled Shelf and Multilayer Perceptron Model
Popis výsledku v původním jazyce
Understanding customer shopping behavior in retail store is important to improve the customers' relationship with the retailer, which can help to lift the revenue of the business. However, compared to online store, the customer browsing activities in the retail store is difficult to be analysed. Therefore, in this study the customer shopping behavior analysis (i.e., browsing activity) in retail store by utilizing radio frequency identification (RFID)-enabled shelf and machine learning model is proposed. First, the RFID technology is installed in the store shelf to monitor the movement tagged products. The dataset was gathered from receive signal strength (RSS) of the tags for different customer behavior scenario. The statistical features were extracted from RSS of tags. Finally, machine learning models were utilized to classify different customer shopping activities. The experiment result showed that the proposed model based on Multilayer Perceptron (MLP) outperformed other models by as much as 97.00%, 96.67%, 97.50%, and 96.57% for accuracy, precision, recall, and f-score, respectively. The proposed model can help the managers better understand what products customer interested in, so that can be utilized for product placement, promotion as well as relevant product recommendations to the customers. (C) Published under licence by IOP Publishing Ltd.
Název v anglickém jazyce
In-store Customer Shopping Behavior Analysis by Utilizing RFID-enabled Shelf and Multilayer Perceptron Model
Popis výsledku anglicky
Understanding customer shopping behavior in retail store is important to improve the customers' relationship with the retailer, which can help to lift the revenue of the business. However, compared to online store, the customer browsing activities in the retail store is difficult to be analysed. Therefore, in this study the customer shopping behavior analysis (i.e., browsing activity) in retail store by utilizing radio frequency identification (RFID)-enabled shelf and machine learning model is proposed. First, the RFID technology is installed in the store shelf to monitor the movement tagged products. The dataset was gathered from receive signal strength (RSS) of the tags for different customer behavior scenario. The statistical features were extracted from RSS of tags. Finally, machine learning models were utilized to classify different customer shopping activities. The experiment result showed that the proposed model based on Multilayer Perceptron (MLP) outperformed other models by as much as 97.00%, 96.67%, 97.50%, and 96.57% for accuracy, precision, recall, and f-score, respectively. The proposed model can help the managers better understand what products customer interested in, so that can be utilized for product placement, promotion as well as relevant product recommendations to the customers. (C) Published under licence by IOP Publishing Ltd.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TF03000053" target="_blank" >TF03000053: Internet věcí v obchodech budoucnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IOP Conference Series: Materials Science and Engineering. Volume 803
ISBN
—
ISSN
1757-8981
e-ISSN
—
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
IOP Publishing
Místo vydání
Bristol
Místo konání akce
Jogdžakarta
Datum konání akce
15. 11. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—