Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

In-store Customer Shopping Behavior Analysis by Utilizing RFID-enabled Shelf and Multilayer Perceptron Model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F20%3A10245022" target="_blank" >RIV/61989100:27350/20:10245022 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1757-899X/803/1/012022" target="_blank" >https://iopscience.iop.org/article/10.1088/1757-899X/803/1/012022</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1757-899X/803/1/012022" target="_blank" >10.1088/1757-899X/803/1/012022</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    In-store Customer Shopping Behavior Analysis by Utilizing RFID-enabled Shelf and Multilayer Perceptron Model

  • Popis výsledku v původním jazyce

    Understanding customer shopping behavior in retail store is important to improve the customers&apos; relationship with the retailer, which can help to lift the revenue of the business. However, compared to online store, the customer browsing activities in the retail store is difficult to be analysed. Therefore, in this study the customer shopping behavior analysis (i.e., browsing activity) in retail store by utilizing radio frequency identification (RFID)-enabled shelf and machine learning model is proposed. First, the RFID technology is installed in the store shelf to monitor the movement tagged products. The dataset was gathered from receive signal strength (RSS) of the tags for different customer behavior scenario. The statistical features were extracted from RSS of tags. Finally, machine learning models were utilized to classify different customer shopping activities. The experiment result showed that the proposed model based on Multilayer Perceptron (MLP) outperformed other models by as much as 97.00%, 96.67%, 97.50%, and 96.57% for accuracy, precision, recall, and f-score, respectively. The proposed model can help the managers better understand what products customer interested in, so that can be utilized for product placement, promotion as well as relevant product recommendations to the customers. (C) Published under licence by IOP Publishing Ltd.

  • Název v anglickém jazyce

    In-store Customer Shopping Behavior Analysis by Utilizing RFID-enabled Shelf and Multilayer Perceptron Model

  • Popis výsledku anglicky

    Understanding customer shopping behavior in retail store is important to improve the customers&apos; relationship with the retailer, which can help to lift the revenue of the business. However, compared to online store, the customer browsing activities in the retail store is difficult to be analysed. Therefore, in this study the customer shopping behavior analysis (i.e., browsing activity) in retail store by utilizing radio frequency identification (RFID)-enabled shelf and machine learning model is proposed. First, the RFID technology is installed in the store shelf to monitor the movement tagged products. The dataset was gathered from receive signal strength (RSS) of the tags for different customer behavior scenario. The statistical features were extracted from RSS of tags. Finally, machine learning models were utilized to classify different customer shopping activities. The experiment result showed that the proposed model based on Multilayer Perceptron (MLP) outperformed other models by as much as 97.00%, 96.67%, 97.50%, and 96.57% for accuracy, precision, recall, and f-score, respectively. The proposed model can help the managers better understand what products customer interested in, so that can be utilized for product placement, promotion as well as relevant product recommendations to the customers. (C) Published under licence by IOP Publishing Ltd.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TF03000053" target="_blank" >TF03000053: Internet věcí v obchodech budoucnosti</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IOP Conference Series: Materials Science and Engineering. Volume 803

  • ISBN

  • ISSN

    1757-8981

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

  • Název nakladatele

    IOP Publishing

  • Místo vydání

    Bristol

  • Místo konání akce

    Jogdžakarta

  • Datum konání akce

    15. 11. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku