3D printed laboratory equipment to measure bulk materials in extreme conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F22%3A10250783" target="_blank" >RIV/61989100:27350/22:10250783 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/22:10250783
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-022-22114-2" target="_blank" >https://www.nature.com/articles/s41598-022-22114-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-022-22114-2" target="_blank" >10.1038/s41598-022-22114-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D printed laboratory equipment to measure bulk materials in extreme conditions
Popis výsledku v původním jazyce
ue to relatively new solutions in the field of 3D printing, there are few studies on the possibility of using printed elements in measuring devices. The aim of this study was to investigate the possibility of using instruments made by material extrusion 3D printing method for measurement of selected mechanical-physical properties of bulk materials. Study explores the feasibility of measuring bulk material mechanical-physical properties when there are obstacles for printing original or modified measuring instruments in common practice. To achieve the goals a series of experiments such as Schulze's ring shear tests, Freeman's FT4 shear tests, compressibility tests, and Flow Rate and Stability tests were performed with use of original aluminium or steel made instruments and 3D printed instruments from polylactic acid and acrylic styrene acrylonitrile materials, using lunar regolith simulants LHS-1 and LMS-1 produced by CLASS Exolith Lab as a sample material. The results obtained from tests with original and printed instruments were then compared. The compared values of tests showed applicability of the 3D printed measuring instruments in a 5% range of measurement deviation. The biggest advantages of the 3D printed measuring instruments were the lower weight, the ability to print on the spot, to replace a damaged part with a new 3D printed part on-demand if extremely fast results are needed or due to the logistical unavailability, customization of the standardized tests for better understanding the behaviour of the particulate materials, and cheaper manufacturing costs.
Název v anglickém jazyce
3D printed laboratory equipment to measure bulk materials in extreme conditions
Popis výsledku anglicky
ue to relatively new solutions in the field of 3D printing, there are few studies on the possibility of using printed elements in measuring devices. The aim of this study was to investigate the possibility of using instruments made by material extrusion 3D printing method for measurement of selected mechanical-physical properties of bulk materials. Study explores the feasibility of measuring bulk material mechanical-physical properties when there are obstacles for printing original or modified measuring instruments in common practice. To achieve the goals a series of experiments such as Schulze's ring shear tests, Freeman's FT4 shear tests, compressibility tests, and Flow Rate and Stability tests were performed with use of original aluminium or steel made instruments and 3D printed instruments from polylactic acid and acrylic styrene acrylonitrile materials, using lunar regolith simulants LHS-1 and LMS-1 produced by CLASS Exolith Lab as a sample material. The results obtained from tests with original and printed instruments were then compared. The compared values of tests showed applicability of the 3D printed measuring instruments in a 5% range of measurement deviation. The biggest advantages of the 3D printed measuring instruments were the lower weight, the ability to print on the spot, to replace a damaged part with a new 3D printed part on-demand if extremely fast results are needed or due to the logistical unavailability, customization of the standardized tests for better understanding the behaviour of the particulate materials, and cheaper manufacturing costs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016945" target="_blank" >EF19_073/0016945: Doktorská grantová soutěž VŠB - TU Ostrava</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
17331
Kód UT WoS článku
000869292100024
EID výsledku v databázi Scopus
2-s2.0-85139888211