Prediction of Metal Corrosion by Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F13%3A86088979" target="_blank" >RIV/61989100:27360/13:86088979 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of Metal Corrosion by Neural Networks
Popis výsledku v původním jazyce
The contribution deals with the use of artificial neural networks for prediction of steel atmospheric corrosion. Atmospheric corrosion of metal materials exposed under atmospheric conditions depends on various factors such as local temperature, relativehumidity, amount of precipitation, pH of rainfall, concentration of main pollutants and exposition time. As these factors are very complex, exact relation for mathematical description of atmospheric corrosion of various metals are not known so far. Classical analytical and mathematical functions are of limited use to describe this type of strongly non-linear system depending on various meteorological-chemical factors and interaction between them and on material parameters. Nowadays there is certain chance to predict a corrosion loss of materials by artificial neural networks. Neural networks are used primarily in real systems, which are characterized by high nonlinearity, considerable complexity and great difficulty of their formal math
Název v anglickém jazyce
Prediction of Metal Corrosion by Neural Networks
Popis výsledku anglicky
The contribution deals with the use of artificial neural networks for prediction of steel atmospheric corrosion. Atmospheric corrosion of metal materials exposed under atmospheric conditions depends on various factors such as local temperature, relativehumidity, amount of precipitation, pH of rainfall, concentration of main pollutants and exposition time. As these factors are very complex, exact relation for mathematical description of atmospheric corrosion of various metals are not known so far. Classical analytical and mathematical functions are of limited use to describe this type of strongly non-linear system depending on various meteorological-chemical factors and interaction between them and on material parameters. Nowadays there is certain chance to predict a corrosion loss of materials by artificial neural networks. Neural networks are used primarily in real systems, which are characterized by high nonlinearity, considerable complexity and great difficulty of their formal math
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Metalurgija = Metallurgy
ISSN
0543-5846
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
52
Stát vydavatele periodika
HR - Chorvatská republika
Počet stran výsledku
3
Strana od-do
379-381
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—