Application of the fuzzy-stochastic methodology to apprising financial derivatives - generalised sensitivity analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F00%3A10001820" target="_blank" >RIV/61989100:27510/00:10001820 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of the fuzzy-stochastic methodology to apprising financial derivatives - generalised sensitivity analysis
Popis výsledku v původním jazyce
The valuing of the financial derivatives as call and put options for underlying assets(shares, bonds, indices etc.) is now a crucial and very tractable problem ov financial decision-making. There are two basic aspects which are traditionally studied, contingent claim feature (payoff function) and risk (stochastic process type). But vagueness is mostly rehter neglected. But a combination of risk (stochastic) and vagueness (fuzzy) methodology could be useful because of decision-making and forecasting conditions. Applicable fuzzy-stochastic methodology under fuzzy numbers (linear T-numbers) is descriebed and proposed. Methodologies of valuing and computing option prices are explained, the Black-Scholes model is mainly described. Input data are in a form of fuzzy numbers, the model is of fuzzy-stochastic type and results are described as possilility-expected value and fuzzy-stochastic distribution. Illustrative example is introduced.
Název v anglickém jazyce
Application of the fuzzy-stochastic methodology to apprising financial derivatives - generalised sensitivity analysis
Popis výsledku anglicky
The valuing of the financial derivatives as call and put options for underlying assets(shares, bonds, indices etc.) is now a crucial and very tractable problem ov financial decision-making. There are two basic aspects which are traditionally studied, contingent claim feature (payoff function) and risk (stochastic process type). But vagueness is mostly rehter neglected. But a combination of risk (stochastic) and vagueness (fuzzy) methodology could be useful because of decision-making and forecasting conditions. Applicable fuzzy-stochastic methodology under fuzzy numbers (linear T-numbers) is descriebed and proposed. Methodologies of valuing and computing option prices are explained, the Black-Scholes model is mainly described. Input data are in a form of fuzzy numbers, the model is of fuzzy-stochastic type and results are described as possilility-expected value and fuzzy-stochastic distribution. Illustrative example is introduced.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2000
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BUSEFAL
ISSN
0296-3698
e-ISSN
—
Svazek periodika
2000
Číslo periodika v rámci svazku
83
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—