Fitting probability distributions to market risk and insurance risk
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F15%3A86095921" target="_blank" >RIV/61989100:27510/15:86095921 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fitting probability distributions to market risk and insurance risk
Popis výsledku v původním jazyce
Determining the parametric VaR approach is very important in establishing the probability distribution of a risk factor. We assume that a normal distribution is symmetric; however, it has some limitations. This distribution is used for modelling asymmetric data or data that have only positive values, such as insurance claims. The aim of the paper is to find the best probability distribution for stock exchange index returns and for insurance claims. The paper is structured as follows. Firstly, we describe the typical probability distributions used in finance, namely normal, Student, logistic, gamma, exponential and lognormal distribution, and the methods of verification. Subsequently, parameters of the distribution types are estimated via the maximum likelihood method, and after that we calculate the value at risk. The VaR is calculated even though the time series do not correspond to the stated types of proba-bility distribution; nevertheless, we calculate the value at risk for all the
Název v anglickém jazyce
Fitting probability distributions to market risk and insurance risk
Popis výsledku anglicky
Determining the parametric VaR approach is very important in establishing the probability distribution of a risk factor. We assume that a normal distribution is symmetric; however, it has some limitations. This distribution is used for modelling asymmetric data or data that have only positive values, such as insurance claims. The aim of the paper is to find the best probability distribution for stock exchange index returns and for insurance claims. The paper is structured as follows. Firstly, we describe the typical probability distributions used in finance, namely normal, Student, logistic, gamma, exponential and lognormal distribution, and the methods of verification. Subsequently, parameters of the distribution types are estimated via the maximum likelihood method, and after that we calculate the value at risk. The VaR is calculated even though the time series do not correspond to the stated types of proba-bility distribution; nevertheless, we calculate the value at risk for all the
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ekonomická revue
ISSN
1212-3951
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
"167 - 173"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—