Asymptotic stochastic dominance rules for sums of i.i.d. random variables.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F16%3A86094707" target="_blank" >RIV/61989100:27510/16:86094707 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cam.2015.12.017" target="_blank" >http://dx.doi.org/10.1016/j.cam.2015.12.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2015.12.017" target="_blank" >10.1016/j.cam.2015.12.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic stochastic dominance rules for sums of i.i.d. random variables.
Popis výsledku v původním jazyce
In this paper, we deal with stochastic dominance rules under the assumption that the random variables are stable distributed. The stable Paretian distribution is generally used to model a wide range of phenomena. In particular, its use in several applicative areas is mainly justified by the generalized central limit theorem, which states that the sum of a number of i.i.d. random variables with heavy tailed distributions tends to a stable Paretian distribution. We show that the asymptotic behaviour of the tails is fundamental for establishing a dominance in the stable Paretian case. Moreover, we introduce a new weak stochastic order of dispersion, aimed at evaluating whether a random variable is more "risky" than another under condition of maximum uncertainty, and a stochastic order of asymmetry, aimed at evaluating whether a random variable is more or less asymmetric than another. The theoretical results are confirmed by a financial application of the obtained dominance rules. The empirical analysis shows that the weak order of risk introduced in this paper is generally a good indicator for the second order stochastic dominance.
Název v anglickém jazyce
Asymptotic stochastic dominance rules for sums of i.i.d. random variables.
Popis výsledku anglicky
In this paper, we deal with stochastic dominance rules under the assumption that the random variables are stable distributed. The stable Paretian distribution is generally used to model a wide range of phenomena. In particular, its use in several applicative areas is mainly justified by the generalized central limit theorem, which states that the sum of a number of i.i.d. random variables with heavy tailed distributions tends to a stable Paretian distribution. We show that the asymptotic behaviour of the tails is fundamental for establishing a dominance in the stable Paretian case. Moreover, we introduce a new weak stochastic order of dispersion, aimed at evaluating whether a random variable is more "risky" than another under condition of maximum uncertainty, and a stochastic order of asymmetry, aimed at evaluating whether a random variable is more or less asymmetric than another. The theoretical results are confirmed by a financial application of the obtained dominance rules. The empirical analysis shows that the weak order of risk introduced in this paper is generally a good indicator for the second order stochastic dominance.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-23699S" target="_blank" >GA15-23699S: RPF a OT aplikovaná na mezinárodních finančních trzích a problému výběru portfolio</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of computational and applied mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
300
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
432-448
Kód UT WoS článku
000371551300031
EID výsledku v databázi Scopus
2-s2.0-84957560262