Asymptotic Multivariate Dominance: A Financial Application
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F16%3A86098330" target="_blank" >RIV/61989100:27510/16:86098330 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11009-016-9502-y" target="_blank" >http://dx.doi.org/10.1007/s11009-016-9502-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11009-016-9502-y" target="_blank" >10.1007/s11009-016-9502-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic Multivariate Dominance: A Financial Application
Popis výsledku v původním jazyce
We propose a multivariate stochastic dominance relation aimed at ranking different financial markets/sectors from the point of view of a non-satiable risk averse investor. In particular, we assume that the vector of returns of a given market is in the domain of attraction of a symmetric stable Paretian law in order to take into account the asymptotic behaviour of the financial returns. We determine the stochastic dominance rule for stable symmetric distributions, where the stability parameter plays a crucial role. Consequently, the multivariate rule for ordering markets is based on a comparison between i) location parameters, ii) dispersion parameters, and iii) stability indices. Finally, we apply the method to the equity markets of the four countries with the highest gross domestic product in 2013, namely, the US, China, Japan and Germany. In this empirical comparison we examine the ex ante and ex post dominance between stock markets, either assuming that the returns are jointly (or conditionally, for a robust approach) Gaussian distributed, or in the domain of attraction of a stable sub-Gaussian law. (C) 2016, Springer Science+Business Media New York.
Název v anglickém jazyce
Asymptotic Multivariate Dominance: A Financial Application
Popis výsledku anglicky
We propose a multivariate stochastic dominance relation aimed at ranking different financial markets/sectors from the point of view of a non-satiable risk averse investor. In particular, we assume that the vector of returns of a given market is in the domain of attraction of a symmetric stable Paretian law in order to take into account the asymptotic behaviour of the financial returns. We determine the stochastic dominance rule for stable symmetric distributions, where the stability parameter plays a crucial role. Consequently, the multivariate rule for ordering markets is based on a comparison between i) location parameters, ii) dispersion parameters, and iii) stability indices. Finally, we apply the method to the equity markets of the four countries with the highest gross domestic product in 2013, namely, the US, China, Japan and Germany. In this empirical comparison we examine the ex ante and ex post dominance between stock markets, either assuming that the returns are jointly (or conditionally, for a robust approach) Gaussian distributed, or in the domain of attraction of a stable sub-Gaussian law. (C) 2016, Springer Science+Business Media New York.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-23699S" target="_blank" >GA15-23699S: RPF a OT aplikovaná na mezinárodních finančních trzích a problému výběru portfolio</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Methodology and Computing in Applied Probability
ISSN
1387-5841
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
1097-1115
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84992450911