Robust optimization with nonnegative decision variables: A DEA approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10240312" target="_blank" >RIV/61989100:27510/19:10240312 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360835218304741" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360835218304741</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cie.2018.10.006" target="_blank" >10.1016/j.cie.2018.10.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust optimization with nonnegative decision variables: A DEA approach
Popis výsledku v původním jazyce
Robust optimization has become the state-of-the-art approach for solving linear optimization problems with uncertain data. Though relatively young, the robust approach has proven to be essential in many real-world applications. Under this approach, robust counterparts to prescribed uncertainty sets are constructed for general solutions to corresponding uncertain linear programming problems. It is remarkable that in most practical problems, the variables represent physical quantities and must be nonnegative. In this paper, we propose alternative robust counterparts with nonnegative decision variables - a reduced robust approach which attempts to minimize model complexity. The new framework is extended to the robust Data Envelopment Analysis (DEA) with the aim of reducing the computational burden. In the DEA methodology, first we deal with the equality in the normalization constraint and then a robust DEA based on the reduced robust counterpart is proposed. The proposed model is examined with numerical data from 250 European banks operating across the globe. The results indicate that the proposed approach (i) reduces almost 50% of the computational burden required to solve DEA problems with nonnegative decision variables; (ii) retains only essential (non-redundant) constraints and decision variables without alerting the optimal value.
Název v anglickém jazyce
Robust optimization with nonnegative decision variables: A DEA approach
Popis výsledku anglicky
Robust optimization has become the state-of-the-art approach for solving linear optimization problems with uncertain data. Though relatively young, the robust approach has proven to be essential in many real-world applications. Under this approach, robust counterparts to prescribed uncertainty sets are constructed for general solutions to corresponding uncertain linear programming problems. It is remarkable that in most practical problems, the variables represent physical quantities and must be nonnegative. In this paper, we propose alternative robust counterparts with nonnegative decision variables - a reduced robust approach which attempts to minimize model complexity. The new framework is extended to the robust Data Envelopment Analysis (DEA) with the aim of reducing the computational burden. In the DEA methodology, first we deal with the equality in the normalization constraint and then a robust DEA based on the reduced robust counterpart is proposed. The proposed model is examined with numerical data from 250 European banks operating across the globe. The results indicate that the proposed approach (i) reduces almost 50% of the computational burden required to solve DEA problems with nonnegative decision variables; (ii) retains only essential (non-redundant) constraints and decision variables without alerting the optimal value.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-17810S" target="_blank" >GA16-17810S: Selektivní měřítka v analýze datových obalů: teorie a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Industrial Engineering
ISSN
0360-8352
e-ISSN
—
Svazek periodika
127
Číslo periodika v rámci svazku
nemá
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
313-325
Kód UT WoS článku
000460708800025
EID výsledku v databázi Scopus
2-s2.0-85056408035