Sparse precision matrices for minimum variance portfolios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10242950" target="_blank" >RIV/61989100:27510/19:10242950 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs10287-019-00344-6" target="_blank" >https://link.springer.com/article/10.1007%2Fs10287-019-00344-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10287-019-00344-6" target="_blank" >10.1007/s10287-019-00344-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse precision matrices for minimum variance portfolios
Popis výsledku v původním jazyce
Financial crises are typically characterized by highly positively correlated asset returns due to the simultaneous distress on almost all securities, high volatilities and the presence of extreme returns. In the aftermath of the 2008 crisis, investors were prompted even further to look for portfolios that minimize risk and can better deal with estimation error in the inputs of the asset allocation models. The minimum variance portfolio a la Markowitz is considered the reference model for risk minimization in equity markets, due to its simplicity in the optimization as well as its need for just one input estimate: the inverse of the covariance estimate, or the so-called precision matrix. In this paper, we propose a data-driven portfolio framework based on two regularization methods, glasso and tlasso, that provide sparse estimates of the precision matrix by penalizing its L1-norm. Glasso and tlasso rely on asset returns Gaussianity or t-Student assumptions, respectively. Simulation and real-world data results support the proposed methods compared to state-of-art approaches, such as random matrix and Ledoit-Wolf shrinkage. (C) 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
Název v anglickém jazyce
Sparse precision matrices for minimum variance portfolios
Popis výsledku anglicky
Financial crises are typically characterized by highly positively correlated asset returns due to the simultaneous distress on almost all securities, high volatilities and the presence of extreme returns. In the aftermath of the 2008 crisis, investors were prompted even further to look for portfolios that minimize risk and can better deal with estimation error in the inputs of the asset allocation models. The minimum variance portfolio a la Markowitz is considered the reference model for risk minimization in equity markets, due to its simplicity in the optimization as well as its need for just one input estimate: the inverse of the covariance estimate, or the so-called precision matrix. In this paper, we propose a data-driven portfolio framework based on two regularization methods, glasso and tlasso, that provide sparse estimates of the precision matrix by penalizing its L1-norm. Glasso and tlasso rely on asset returns Gaussianity or t-Student assumptions, respectively. Simulation and real-world data results support the proposed methods compared to state-of-art approaches, such as random matrix and Ledoit-Wolf shrinkage. (C) 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Management Science
ISSN
1619-697X
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
375-400
Kód UT WoS článku
000476740000002
EID výsledku v databázi Scopus
2-s2.0-85061043573