On the impact of distributional assumptions for operational risk modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10242951" target="_blank" >RIV/61989100:27510/19:10242951 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.teknoscienze.com/tks_article/on-the-impact-of-distributional-assumptions-for-operational-risk-modelling/" target="_blank" >https://www.teknoscienze.com/tks_article/on-the-impact-of-distributional-assumptions-for-operational-risk-modelling/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the impact of distributional assumptions for operational risk modelling
Popis výsledku v původním jazyce
Operational risk modelling is one of the most challenging risk types due to its serious impact on the health of financial institutions as well as lack of data leading to modelling difficulties. It follows that it is quite hard to get reliable estimate of the probability distribution of risk events, as concerns both, the frequencies and the severity, and simultaneously, there is a need to estimate the risk levels in the tails. In this paper we focus on the case of one financial institution with rather insufficient databases of risk events and try to estimate the risk (in terms of VaR and cVaR) using various kinds of Lévy models. The results show that there can be quite significant differences among weekly- and monthly-aggregated data especially in the tails, though rather simplifying Gaussian distribution does not strongly differ from theoretically more appropriate gamma or Weibull distributions. (C) 2019 TeknoScienze. All rights reserved.
Název v anglickém jazyce
On the impact of distributional assumptions for operational risk modelling
Popis výsledku anglicky
Operational risk modelling is one of the most challenging risk types due to its serious impact on the health of financial institutions as well as lack of data leading to modelling difficulties. It follows that it is quite hard to get reliable estimate of the probability distribution of risk events, as concerns both, the frequencies and the severity, and simultaneously, there is a need to estimate the risk levels in the tails. In this paper we focus on the case of one financial institution with rather insufficient databases of risk events and try to estimate the risk (in terms of VaR and cVaR) using various kinds of Lévy models. The results show that there can be quite significant differences among weekly- and monthly-aggregated data especially in the tails, though rather simplifying Gaussian distribution does not strongly differ from theoretically more appropriate gamma or Weibull distributions. (C) 2019 TeknoScienze. All rights reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-13142S" target="_blank" >GA13-13142S: Ověření vhodnosti jednotlivých Lévyho modelů pro vybrané úlohy finanční modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chimica Oggi
ISSN
0392-839X
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
5
Strana od-do
39-43
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85072394742