Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The discontinuous Galerkin method for discretely observed Asian options

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10245352" target="_blank" >RIV/61989100:27510/20:10245352 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24510/20:00008636

  • Výsledek na webu

    <a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85077910683&origin=resultslist&sort=plf-f&src=s&st1=tichy%2c+t&st2=&sid=ae28ceb80f2fa196dac98015bd0ae64a&sot=b&sdt=b&sl=21&s=AUTHOR-NAME%28tichy%2c+t%29&relpos=1&citeCnt=0&searchTerm=" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85077910683&origin=resultslist&sort=plf-f&src=s&st1=tichy%2c+t&st2=&sid=ae28ceb80f2fa196dac98015bd0ae64a&sot=b&sdt=b&sl=21&s=AUTHOR-NAME%28tichy%2c+t%29&relpos=1&citeCnt=0&searchTerm=</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mma.6160" target="_blank" >10.1002/mma.6160</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The discontinuous Galerkin method for discretely observed Asian options

  • Popis výsledku v původním jazyce

    Asian options represent an important subclass of the path-dependent contracts that are identified by payoff depending on the average of the underlying asset prices over the prespecified period of option lifetime. Commonly, this average is observed at discrete dates, and also, early exercise features can be admitted. As a result, analytical pricing formulae are not always available. Therefore, some form of a numerical approximation is essential for efficient option valuation. In this paper, we study a PDE model for pricing discretely observed arithmetic Asian options with fixed as well as floating strike for both European and American exercise features. The pricing equation for such options is similar to the Black-Scholes equation with 1 underlying asset, and the corresponding average appears only in the jump conditions across the sampling dates. The objective of the paper is to present the comprehensive methodological concept that forms and improves the valuation process. We employ a robust numerical procedure based on the discontinuous Galerkin approach arising from the piecewise polynomial generally discontinuous approximations. This technique enables a simple treatment of discrete sampling by incorporation of jump conditions at each monitoring date. Moreover, an American early exercise constraint is directly handled as an additional nonlinear source term in the pricing equation. The proposed solving procedure is accompanied by an empirical study with practical results compared to reference values.

  • Název v anglickém jazyce

    The discontinuous Galerkin method for discretely observed Asian options

  • Popis výsledku anglicky

    Asian options represent an important subclass of the path-dependent contracts that are identified by payoff depending on the average of the underlying asset prices over the prespecified period of option lifetime. Commonly, this average is observed at discrete dates, and also, early exercise features can be admitted. As a result, analytical pricing formulae are not always available. Therefore, some form of a numerical approximation is essential for efficient option valuation. In this paper, we study a PDE model for pricing discretely observed arithmetic Asian options with fixed as well as floating strike for both European and American exercise features. The pricing equation for such options is similar to the Black-Scholes equation with 1 underlying asset, and the corresponding average appears only in the jump conditions across the sampling dates. The objective of the paper is to present the comprehensive methodological concept that forms and improves the valuation process. We employ a robust numerical procedure based on the discontinuous Galerkin approach arising from the piecewise polynomial generally discontinuous approximations. This technique enables a simple treatment of discrete sampling by incorporation of jump conditions at each monitoring date. Moreover, an American early exercise constraint is directly handled as an additional nonlinear source term in the pricing equation. The proposed solving procedure is accompanied by an empirical study with practical results compared to reference values.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50200 - Economics and Business

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematical Methods in the Applied Sciences

  • ISSN

    0170-4214

  • e-ISSN

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    7726-7746

  • Kód UT WoS článku

    000549958400018

  • EID výsledku v databázi Scopus

    2-s2.0-85077910683