The discontinuous Galerkin method for discretely observed Asian options
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10245352" target="_blank" >RIV/61989100:27510/20:10245352 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24510/20:00008636
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85077910683&origin=resultslist&sort=plf-f&src=s&st1=tichy%2c+t&st2=&sid=ae28ceb80f2fa196dac98015bd0ae64a&sot=b&sdt=b&sl=21&s=AUTHOR-NAME%28tichy%2c+t%29&relpos=1&citeCnt=0&searchTerm=" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85077910683&origin=resultslist&sort=plf-f&src=s&st1=tichy%2c+t&st2=&sid=ae28ceb80f2fa196dac98015bd0ae64a&sot=b&sdt=b&sl=21&s=AUTHOR-NAME%28tichy%2c+t%29&relpos=1&citeCnt=0&searchTerm=</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.6160" target="_blank" >10.1002/mma.6160</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The discontinuous Galerkin method for discretely observed Asian options
Popis výsledku v původním jazyce
Asian options represent an important subclass of the path-dependent contracts that are identified by payoff depending on the average of the underlying asset prices over the prespecified period of option lifetime. Commonly, this average is observed at discrete dates, and also, early exercise features can be admitted. As a result, analytical pricing formulae are not always available. Therefore, some form of a numerical approximation is essential for efficient option valuation. In this paper, we study a PDE model for pricing discretely observed arithmetic Asian options with fixed as well as floating strike for both European and American exercise features. The pricing equation for such options is similar to the Black-Scholes equation with 1 underlying asset, and the corresponding average appears only in the jump conditions across the sampling dates. The objective of the paper is to present the comprehensive methodological concept that forms and improves the valuation process. We employ a robust numerical procedure based on the discontinuous Galerkin approach arising from the piecewise polynomial generally discontinuous approximations. This technique enables a simple treatment of discrete sampling by incorporation of jump conditions at each monitoring date. Moreover, an American early exercise constraint is directly handled as an additional nonlinear source term in the pricing equation. The proposed solving procedure is accompanied by an empirical study with practical results compared to reference values.
Název v anglickém jazyce
The discontinuous Galerkin method for discretely observed Asian options
Popis výsledku anglicky
Asian options represent an important subclass of the path-dependent contracts that are identified by payoff depending on the average of the underlying asset prices over the prespecified period of option lifetime. Commonly, this average is observed at discrete dates, and also, early exercise features can be admitted. As a result, analytical pricing formulae are not always available. Therefore, some form of a numerical approximation is essential for efficient option valuation. In this paper, we study a PDE model for pricing discretely observed arithmetic Asian options with fixed as well as floating strike for both European and American exercise features. The pricing equation for such options is similar to the Black-Scholes equation with 1 underlying asset, and the corresponding average appears only in the jump conditions across the sampling dates. The objective of the paper is to present the comprehensive methodological concept that forms and improves the valuation process. We employ a robust numerical procedure based on the discontinuous Galerkin approach arising from the piecewise polynomial generally discontinuous approximations. This technique enables a simple treatment of discrete sampling by incorporation of jump conditions at each monitoring date. Moreover, an American early exercise constraint is directly handled as an additional nonlinear source term in the pricing equation. The proposed solving procedure is accompanied by an empirical study with practical results compared to reference values.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Svazek periodika
43
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
7726-7746
Kód UT WoS článku
000549958400018
EID výsledku v databázi Scopus
2-s2.0-85077910683