Option valuation under the VG process by a DG method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10248356" target="_blank" >RIV/61989100:27510/21:10248356 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24510/21:00009601
Výsledek na webu
<a href="https://link.springer.com/article/10.21136/AM.2021.0345-20" target="_blank" >https://link.springer.com/article/10.21136/AM.2021.0345-20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2021.0345-20" target="_blank" >10.21136/AM.2021.0345-20</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Option valuation under the VG process by a DG method
Popis výsledku v původním jazyce
The paper presents a discontinuous Galerkin method for solving partial integrodifferential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical procedure based on piecewise polynomial generally discontinuous approximations in the spatial domain. This technique enables a simple treatment of the American early exercise constraint by a direct encompassing it as an additional nonlinear source term to the governing equation. Special attention is paid to the proper discretization of non-local jump integral components, which is based on splitting integrals with respect to the domain according to the size of the jumps. Moreover, to preserve sparsity of resulting linear algebraic systems the pricing equation is integrated in the temporal variable by a semi-implicit Euler scheme. Finally, the numerical results demonstrate the capability of the numerical scheme presented within the reference benchmarks.
Název v anglickém jazyce
Option valuation under the VG process by a DG method
Popis výsledku anglicky
The paper presents a discontinuous Galerkin method for solving partial integrodifferential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical procedure based on piecewise polynomial generally discontinuous approximations in the spatial domain. This technique enables a simple treatment of the American early exercise constraint by a direct encompassing it as an additional nonlinear source term to the governing equation. Special attention is paid to the proper discretization of non-local jump integral components, which is based on splitting integrals with respect to the domain according to the size of the jumps. Moreover, to preserve sparsity of resulting linear algebraic systems the pricing equation is integrated in the temporal variable by a semi-implicit Euler scheme. Finally, the numerical results demonstrate the capability of the numerical scheme presented within the reference benchmarks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-13951S" target="_blank" >GA18-13951S: Nové přístupy k modelování finančních časových řad pomocí soft-computingu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
66
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
30
Strana od-do
857-886
Kód UT WoS článku
000720636800004
EID výsledku v databázi Scopus
2-s2.0-85119500519