DG Method for Pricing European Options under Merton Jump-Diffusion Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F19%3A00007427" target="_blank" >RIV/46747885:24510/19:00007427 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27510/19:10242953
Výsledek na webu
<a href="https://articles.math.cas.cz/10.21136/AM.2019.0305-18" target="_blank" >https://articles.math.cas.cz/10.21136/AM.2019.0305-18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2019.0305-18" target="_blank" >10.21136/AM.2019.0305-18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DG Method for Pricing European Options under Merton Jump-Diffusion Model
Popis výsledku v původním jazyce
Under real market conditions, there exist many cases when it is inevitable to adopt numerical approximations of option prices due to non-existence of analytical formulae. Obviously, any numerical technique should be tested for the cases when the analytical solution is well known. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Merton jump-diffusion model, when the evolution of the asset prices is driven by a Lévy process with finite activity. The valuation of options under such a model with lognormally distributed jumps requires solving a parabolic partial integro-differential equation which involves both the integrals and the derivatives of the unknown pricing function. The integral term related to jumps leads to new theoretical and numerical issues regarding the solving of the pricing equation in comparison with the standard approach for the Black-Scholes equation. Here we adopt the idea of the relatively modern technique that the integral terms in Merton-type models can be viewed as solutions of proper differential equations, which can be accurately solved in a simple way. For practical purposes of numerical pricing of options in such models we propose a two-stage implicit-explicit scheme arising from the discontinuous piecewise polynomial approximation, i.e., the discontinuous Galerkin method. This solution procedure is accompanied with theoretical results and discussed within the numerical results on reference benchmarks.
Název v anglickém jazyce
DG Method for Pricing European Options under Merton Jump-Diffusion Model
Popis výsledku anglicky
Under real market conditions, there exist many cases when it is inevitable to adopt numerical approximations of option prices due to non-existence of analytical formulae. Obviously, any numerical technique should be tested for the cases when the analytical solution is well known. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Merton jump-diffusion model, when the evolution of the asset prices is driven by a Lévy process with finite activity. The valuation of options under such a model with lognormally distributed jumps requires solving a parabolic partial integro-differential equation which involves both the integrals and the derivatives of the unknown pricing function. The integral term related to jumps leads to new theoretical and numerical issues regarding the solving of the pricing equation in comparison with the standard approach for the Black-Scholes equation. Here we adopt the idea of the relatively modern technique that the integral terms in Merton-type models can be viewed as solutions of proper differential equations, which can be accurately solved in a simple way. For practical purposes of numerical pricing of options in such models we propose a two-stage implicit-explicit scheme arising from the discontinuous piecewise polynomial approximation, i.e., the discontinuous Galerkin method. This solution procedure is accompanied with theoretical results and discussed within the numerical results on reference benchmarks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-09541S" target="_blank" >GA16-09541S: Robustní numerická schémata pro oceňování vybraných opcí za různých tržních podmínek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
30
Strana od-do
501-530
Kód UT WoS článku
000491496200002
EID výsledku v databázi Scopus
2-s2.0-85073620538