Modeling CDS spreads: A comparison of some hybrid approaches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10245357" target="_blank" >RIV/61989100:27510/20:10245357 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85083847576&origin=resultslist&sort=plf-f&src=s&st1=radi%2c+d&st2=&sid=b5e7922457e298202b1fb3eaf34f31d6&sot=b&sdt=b&sl=20&s=AUTHOR-NAME%28radi%2c+d%29&relpos=2&citeCnt=0&searchTerm=" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85083847576&origin=resultslist&sort=plf-f&src=s&st1=radi%2c+d&st2=&sid=b5e7922457e298202b1fb3eaf34f31d6&sot=b&sdt=b&sl=20&s=AUTHOR-NAME%28radi%2c+d%29&relpos=2&citeCnt=0&searchTerm=</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jempfin.2020.03.001" target="_blank" >10.1016/j.jempfin.2020.03.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling CDS spreads: A comparison of some hybrid approaches
Popis výsledku v původním jazyce
According to the credit risk model proposed by Cathcart and El-Jahel (2006), default can occur either expectedly, when a certain signaling variable breaches a lower barrier, or unexpectedly, as the first jump of a Poisson process, whose intensity depends on the signaling variable itself and on the interest rate. In the present paper we test the performances of such a model and of other three models generalized by it in fitting the term structure of credit default swap (CDS) spreads. In order to do so, we derive a semi-analytical formula for pricing CDSs and we use it to fit the observed term structures of 65 different CDSs. The analysis reveals that all the model parameters yield a relevant contribution to credit spreads. Moreover, if the dependence of the default intensity on both the signaling variable and the interest rate is removed, the pricing of CDSs becomes very simple, from both the analytical and the computational standpoint, while the goodness-of-fit is reduced by only a few percentage points. Therefore, when using the credit risk model proposed by Cathcart and El-Jahel (2006), assuming a constant default intensity provides an interesting and efficient compromise between parsimony and goodnessof-fit. Furthermore, by fitting the term structure of CDS spreads on a period of about twelve years, we find that the parameters of the model with constant default are rather stable over time, and the goodness-of-fit is maintained high.
Název v anglickém jazyce
Modeling CDS spreads: A comparison of some hybrid approaches
Popis výsledku anglicky
According to the credit risk model proposed by Cathcart and El-Jahel (2006), default can occur either expectedly, when a certain signaling variable breaches a lower barrier, or unexpectedly, as the first jump of a Poisson process, whose intensity depends on the signaling variable itself and on the interest rate. In the present paper we test the performances of such a model and of other three models generalized by it in fitting the term structure of credit default swap (CDS) spreads. In order to do so, we derive a semi-analytical formula for pricing CDSs and we use it to fit the observed term structures of 65 different CDSs. The analysis reveals that all the model parameters yield a relevant contribution to credit spreads. Moreover, if the dependence of the default intensity on both the signaling variable and the interest rate is removed, the pricing of CDSs becomes very simple, from both the analytical and the computational standpoint, while the goodness-of-fit is reduced by only a few percentage points. Therefore, when using the credit risk model proposed by Cathcart and El-Jahel (2006), assuming a constant default intensity provides an interesting and efficient compromise between parsimony and goodnessof-fit. Furthermore, by fitting the term structure of CDS spreads on a period of about twelve years, we find that the parameters of the model with constant default are rather stable over time, and the goodness-of-fit is maintained high.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-25660Y" target="_blank" >GJ20-25660Y: Modelování kreditního a systémového rizika v sektoru neživotního pojištění</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Empirical Finance
ISSN
0927-5398
e-ISSN
—
Svazek periodika
57
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
107-124
Kód UT WoS článku
000536300700007
EID výsledku v databázi Scopus
2-s2.0-85083847576