Tail risks in large portfolio selection: penalized quantile and expectile minimum deviation models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10246937" target="_blank" >RIV/61989100:27510/21:10246937 - isvavai.cz</a>
Výsledek na webu
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=24&SID=D2cCfOCJdGDoJAoEkQG&page=1&doc=8&cacheurlFromRightClick=no" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=24&SID=D2cCfOCJdGDoJAoEkQG&page=1&doc=8&cacheurlFromRightClick=no</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/14697688.2020.1820072" target="_blank" >10.1080/14697688.2020.1820072</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tail risks in large portfolio selection: penalized quantile and expectile minimum deviation models
Popis výsledku v původním jazyce
Accurate estimation and optimal control of tail risk is important for building portfolios with desirable properties, especially when dealing with a large set of assets. In this work, we consider optimal asset allocation strategies based on the minimization of two asymmetric deviation measures, related to quantile and expectile regression, respectively. Their properties are discussed in relation with the 'risk quadrangle' framework introduced by Rockafellar and Uryasev [The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surv. Oper. Res. Manag. Sci., 2013, 18(1-2), 33-53], and compared to traditional strategies, such as the mean-variance portfolio. In order to control estimation error and improve the out-of-sample performance of the proposed models, we include ridge and elastic-net regularization penalties. Finally, we propose quadratic programming formulations for the optimization problems. Simulations and real-world analyses on multiple datasets allow to discuss pros and cons of the different methods. The results show that the ridge and elastic-net allocations are effective in improving the out-of-sample performance, especially in large portfolios, compared to the un-penalized ones.
Název v anglickém jazyce
Tail risks in large portfolio selection: penalized quantile and expectile minimum deviation models
Popis výsledku anglicky
Accurate estimation and optimal control of tail risk is important for building portfolios with desirable properties, especially when dealing with a large set of assets. In this work, we consider optimal asset allocation strategies based on the minimization of two asymmetric deviation measures, related to quantile and expectile regression, respectively. Their properties are discussed in relation with the 'risk quadrangle' framework introduced by Rockafellar and Uryasev [The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surv. Oper. Res. Manag. Sci., 2013, 18(1-2), 33-53], and compared to traditional strategies, such as the mean-variance portfolio. In order to control estimation error and improve the out-of-sample performance of the proposed models, we include ridge and elastic-net regularization penalties. Finally, we propose quadratic programming formulations for the optimization problems. Simulations and real-world analyses on multiple datasets allow to discuss pros and cons of the different methods. The results show that the ridge and elastic-net allocations are effective in improving the out-of-sample performance, especially in large portfolios, compared to the un-penalized ones.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-11965S" target="_blank" >GA19-11965S: Teorie sítí při problému optimalizace a trackování portfolia</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quantitative Finance
ISSN
1469-7688
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
243-261
Kód UT WoS článku
000584838300001
EID výsledku v databázi Scopus
2-s2.0-85094655167