Portfolio optimization with asset preselection using data envelopment analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F23%3A10250898" target="_blank" >RIV/61989100:27510/23:10250898 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10100-022-00808-2#citeas" target="_blank" >https://link.springer.com/article/10.1007/s10100-022-00808-2#citeas</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10100-022-00808-2" target="_blank" >10.1007/s10100-022-00808-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Portfolio optimization with asset preselection using data envelopment analysis
Popis výsledku v původním jazyce
This paper uses data envelopment analysis (DEA) approach as a nonparametric efficiency analysis tool to preselect efficient assets in large-scale portfolio problems. Thus, we reduce the dimensionality of portfolio problems, considering multiple asset performance criteria in a linear DEA model. We first introduce several reward/risk criteria that are typically used in portfolio literature to identify features of financial returns. Secondly, we suggest some DEA input/output sets for preselecting efficient assets in a large-scale portfolio framework. Then, we evaluate the impact of the preselected assets in different portfolio optimization strategies. In particular, we propose an ex-post empirical analysis based on two alternative datasets: the components of S &P500 and the Fama and French 100 portfolio formed on size and book to market. According to this empirical analysis we observe better performances of the DEA preselection than the classic PCA factor models for large scale portfolio selection problems. Moreover, the proposed model outperform the S &P500 index and the strategy based on the fully diversified portfolio.
Název v anglickém jazyce
Portfolio optimization with asset preselection using data envelopment analysis
Popis výsledku anglicky
This paper uses data envelopment analysis (DEA) approach as a nonparametric efficiency analysis tool to preselect efficient assets in large-scale portfolio problems. Thus, we reduce the dimensionality of portfolio problems, considering multiple asset performance criteria in a linear DEA model. We first introduce several reward/risk criteria that are typically used in portfolio literature to identify features of financial returns. Secondly, we suggest some DEA input/output sets for preselecting efficient assets in a large-scale portfolio framework. Then, we evaluate the impact of the preselected assets in different portfolio optimization strategies. In particular, we propose an ex-post empirical analysis based on two alternative datasets: the components of S &P500 and the Fama and French 100 portfolio formed on size and book to market. According to this empirical analysis we observe better performances of the DEA preselection than the classic PCA factor models for large scale portfolio selection problems. Moreover, the proposed model outperform the S &P500 index and the strategy based on the fully diversified portfolio.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-11965S" target="_blank" >GA19-11965S: Teorie sítí při problému optimalizace a trackování portfolia</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Central European Journal of Operations Research
ISSN
1435-246X
e-ISSN
1613-9178
Svazek periodika
31
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
287-310
Kód UT WoS článku
000824988100001
EID výsledku v databázi Scopus
2-s2.0-85133624088