Robust non-radial data envelopment analysis models under data uncertainty
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F22%3A10250078" target="_blank" >RIV/61989100:27510/22:10250078 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417422012386?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417422012386?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2022.118023" target="_blank" >10.1016/j.eswa.2022.118023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust non-radial data envelopment analysis models under data uncertainty
Popis výsledku v původním jazyce
Russell measure (RM) and enhanced Russell measure (ERM) are popular non-radial measures for efficiency assessment of decision-making units (DMUs) in data envelopment analysis (DEA). Input and output data of both original RM and ERM are assumed to be deterministic. However, this assumption may not be valid in some situations because of data uncertainty arising from measurement errors, data staleness, and multiple repeated measurements. Interval DEA (IDEA) has been proposed to measure the interval efficiencies from the optimistic and pessimistic viewpoints while the robustness of the assessment is questionable. This paper draws on a class of robust optimisation models to surmount uncertainty with a high degree of robustness in the RM and ERM models. The contribution of this paper is fivefold; (1) we develop new robust non-radial DEA models to measure the robust efficiency of DMUs under data uncertainty, which are adjustable based upon conservatism levels, (2) we use Monte-Carlo simulation in an attempt to identify an appropriate range for the budget of uncertainty in terms of the highest conformity of ranking results, (3) we introduce the concept of the price of robustness to scrutinise the effectiveness and robustness of the proposed models, (4) we compare the developed robust models in this paper with other existing approaches, both radial and non-radial models, and (5) we explore an application to assess the efficiency of the Master of Business Administration (MBA) programmes where data uncertainties influence the quality and reliability of results.
Název v anglickém jazyce
Robust non-radial data envelopment analysis models under data uncertainty
Popis výsledku anglicky
Russell measure (RM) and enhanced Russell measure (ERM) are popular non-radial measures for efficiency assessment of decision-making units (DMUs) in data envelopment analysis (DEA). Input and output data of both original RM and ERM are assumed to be deterministic. However, this assumption may not be valid in some situations because of data uncertainty arising from measurement errors, data staleness, and multiple repeated measurements. Interval DEA (IDEA) has been proposed to measure the interval efficiencies from the optimistic and pessimistic viewpoints while the robustness of the assessment is questionable. This paper draws on a class of robust optimisation models to surmount uncertainty with a high degree of robustness in the RM and ERM models. The contribution of this paper is fivefold; (1) we develop new robust non-radial DEA models to measure the robust efficiency of DMUs under data uncertainty, which are adjustable based upon conservatism levels, (2) we use Monte-Carlo simulation in an attempt to identify an appropriate range for the budget of uncertainty in terms of the highest conformity of ranking results, (3) we introduce the concept of the price of robustness to scrutinise the effectiveness and robustness of the proposed models, (4) we compare the developed robust models in this paper with other existing approaches, both radial and non-radial models, and (5) we explore an application to assess the efficiency of the Master of Business Administration (MBA) programmes where data uncertainties influence the quality and reliability of results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-13946S" target="_blank" >GA19-13946S: Hodnocení výkonnosti při výskytu neklasifikovaných faktorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
207
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
nestrankovano
Kód UT WoS článku
000854960000001
EID výsledku v databázi Scopus
2-s2.0-85137093591