Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Penalized enhanced portfolio replication with asymmetric deviation measures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F24%3A10253768" target="_blank" >RIV/61989100:27510/24:10253768 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10479-023-05576-z" target="_blank" >https://link.springer.com/article/10.1007/s10479-023-05576-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10479-023-05576-z" target="_blank" >10.1007/s10479-023-05576-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Penalized enhanced portfolio replication with asymmetric deviation measures

  • Popis výsledku v původním jazyce

    Passive investment strategies, such as those implemented by Exchange Traded Funds (ETFs), have gained increasing popularity among investors. In this context, smart beta products promise to deliver improved performance or lower risk through the implementation of systematic investing strategies, and they are also typically more cost-effective than traditional active management. The majority of research on index replication focuses on minimizing tracking error relative to a benchmark index, implementing constraints to improve performance, or restricting the number of assets included in portfolios. Our focus is on enhancing the benchmark through a limited number of deviations from the benchmark. We propose a range of innovative investment strategies aimed at minimizing asymmetric deviation measures related to expectiles and quantiles, while also controlling for the deviation of portfolio weights from the benchmark composition through penalization. This approach, as compared to traditional minimum tracking error volatility strategies, places a greater emphasis on the overall risk of the portfolio, rather than just the risk relative to the benchmark. The use of penalization also helps to mitigate estimation risk and minimize turnover, as compared to strategies without penalization. Through empirical analysis using simulated and real-world data, we critically examine the benefits and drawbacks of the proposed strategies in comparison to state-of-the-art tracking models.

  • Název v anglickém jazyce

    Penalized enhanced portfolio replication with asymmetric deviation measures

  • Popis výsledku anglicky

    Passive investment strategies, such as those implemented by Exchange Traded Funds (ETFs), have gained increasing popularity among investors. In this context, smart beta products promise to deliver improved performance or lower risk through the implementation of systematic investing strategies, and they are also typically more cost-effective than traditional active management. The majority of research on index replication focuses on minimizing tracking error relative to a benchmark index, implementing constraints to improve performance, or restricting the number of assets included in portfolios. Our focus is on enhancing the benchmark through a limited number of deviations from the benchmark. We propose a range of innovative investment strategies aimed at minimizing asymmetric deviation measures related to expectiles and quantiles, while also controlling for the deviation of portfolio weights from the benchmark composition through penalization. This approach, as compared to traditional minimum tracking error volatility strategies, places a greater emphasis on the overall risk of the portfolio, rather than just the risk relative to the benchmark. The use of penalization also helps to mitigate estimation risk and minimize turnover, as compared to strategies without penalization. Through empirical analysis using simulated and real-world data, we critically examine the benefits and drawbacks of the proposed strategies in comparison to state-of-the-art tracking models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-11965S" target="_blank" >GA19-11965S: Teorie sítí při problému optimalizace a trackování portfolia</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Operations Research

  • ISSN

    0254-5330

  • e-ISSN

    1572-9338

  • Svazek periodika

    332

  • Číslo periodika v rámci svazku

    1-3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    51

  • Strana od-do

    481-531

  • Kód UT WoS článku

    001072293500001

  • EID výsledku v databázi Scopus

    2-s2.0-85172659289