Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10248947" target="_blank" >RIV/61989100:27640/21:10248947 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/21:10248947 RIV/61989592:15640/21:73610653
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsnano.1c08455" target="_blank" >https://pubs.acs.org/doi/10.1021/acsnano.1c08455</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsnano.1c08455" target="_blank" >10.1021/acsnano.1c08455</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia
Popis výsledku v původním jazyce
The conversion of nitrogen to ammonia offers a sustainable and environmentally friendly approach for producing precursors for fertilizers and efficient energy carriers. Owing to the large energy density and significant gravimetric hydrogen content, NH3 is considered an apt next-generation energy carrier and liquid fuel. However, the low conversion efficiency and slow production of ammonia through the nitrogen reduction reaction (NRR) are currently bottlenecks, making it an unviable alternative to the traditional Haber-Bosch process for ammonia production. The rational design and engineering of catalysts (both photo- and electro-) represent a crucial challenge for improving the efficiency and exploiting the full capability of the NRR. In the present review, we highlight recent progress in the development of graphene-based systems and graphene derivatives as catalysts for the NRR. Initially, the history, fundamental mechanism, and importance of the NRR to produce ammonia are briefly discussed. We also outline how surface functionalization, defects, and hybrid structures (single-atom/multiatom as well as composites) affect the N2 conversion efficiency. The potential of graphene and graphene derivatives as NRR catalysts is highlighted using pertinent examples from theoretical simulations as well as machine learning based performance predictive methods. The review is concluded by identifying the crucial advantages, drawbacks, and challenges associated with principal scientific and technological breakthroughs in ambient catalytic NRR. (C) 2021 American Chemical Society.
Název v anglickém jazyce
Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia
Popis výsledku anglicky
The conversion of nitrogen to ammonia offers a sustainable and environmentally friendly approach for producing precursors for fertilizers and efficient energy carriers. Owing to the large energy density and significant gravimetric hydrogen content, NH3 is considered an apt next-generation energy carrier and liquid fuel. However, the low conversion efficiency and slow production of ammonia through the nitrogen reduction reaction (NRR) are currently bottlenecks, making it an unviable alternative to the traditional Haber-Bosch process for ammonia production. The rational design and engineering of catalysts (both photo- and electro-) represent a crucial challenge for improving the efficiency and exploiting the full capability of the NRR. In the present review, we highlight recent progress in the development of graphene-based systems and graphene derivatives as catalysts for the NRR. Initially, the history, fundamental mechanism, and importance of the NRR to produce ammonia are briefly discussed. We also outline how surface functionalization, defects, and hybrid structures (single-atom/multiatom as well as composites) affect the N2 conversion efficiency. The potential of graphene and graphene derivatives as NRR catalysts is highlighted using pertinent examples from theoretical simulations as well as machine learning based performance predictive methods. The review is concluded by identifying the crucial advantages, drawbacks, and challenges associated with principal scientific and technological breakthroughs in ambient catalytic NRR. (C) 2021 American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Nano
ISSN
1936-0851
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
"17275 "- 17298
Kód UT WoS článku
000747115200016
EID výsledku v databázi Scopus
2-s2.0-85119412140