Design of non-transition-metal-doped nanoribbon catalysis to achieve efficient nitrogen fixation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10248089" target="_blank" >RIV/61989100:27740/21:10248089 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/MA/D1MA00518A" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/MA/D1MA00518A</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d1ma00518a" target="_blank" >10.1039/d1ma00518a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design of non-transition-metal-doped nanoribbon catalysis to achieve efficient nitrogen fixation
Popis výsledku v původním jazyce
The high percentage of N-2 in the air can provide an abundant nitrogen source for the ammonia industry. However, the nitrogen fixation process still faces great challenges due to the stable nitrogen-nitrogen triple bonds. Recently, single-atom catalysts (SACs) have arguably become the most promising frontier in the synthetic ammonia industry due to their high activity, selectivity and stability. In particular, metal-free catalysis has attracted great attention due to its low-cost and environmentally friendly features. Herein, we investigate a series of nitrogen-reduction reaction (NRR) electrocatalysts as graphene nanoribbons (GNRs) embedded with 16 kinds of non-transition metal single-atom catalysts (non-TMSACs) using density functional theory (DFT) computations. The stability of this system is first confirmed by AIMD simulations and formation energies. Among all the candidates, Si anchored on the GNR system achieves a limiting potential as low as -0.45 V and the binding energy for NNH also serves as a good descriptor for the onset potential. The electronic structure reveals that this design satisfies an "acceptance-donation" interaction scenario, which is also confirmed by the crystal orbital Hamilton population (COHP) and the spatial charge distribution. This study not only proposes an effective catalysis approach for the NRR, but also emphasizes the origin of electronic structures, which may provide guidance for future NRR catalyst designs.
Název v anglickém jazyce
Design of non-transition-metal-doped nanoribbon catalysis to achieve efficient nitrogen fixation
Popis výsledku anglicky
The high percentage of N-2 in the air can provide an abundant nitrogen source for the ammonia industry. However, the nitrogen fixation process still faces great challenges due to the stable nitrogen-nitrogen triple bonds. Recently, single-atom catalysts (SACs) have arguably become the most promising frontier in the synthetic ammonia industry due to their high activity, selectivity and stability. In particular, metal-free catalysis has attracted great attention due to its low-cost and environmentally friendly features. Herein, we investigate a series of nitrogen-reduction reaction (NRR) electrocatalysts as graphene nanoribbons (GNRs) embedded with 16 kinds of non-transition metal single-atom catalysts (non-TMSACs) using density functional theory (DFT) computations. The stability of this system is first confirmed by AIMD simulations and formation energies. Among all the candidates, Si anchored on the GNR system achieves a limiting potential as low as -0.45 V and the binding energy for NNH also serves as a good descriptor for the onset potential. The electronic structure reveals that this design satisfies an "acceptance-donation" interaction scenario, which is also confirmed by the crystal orbital Hamilton population (COHP) and the spatial charge distribution. This study not only proposes an effective catalysis approach for the NRR, but also emphasizes the origin of electronic structures, which may provide guidance for future NRR catalyst designs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Advances
ISSN
2633-5409
e-ISSN
2633-5409
Svazek periodika
2
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
"7423 "- 7430
Kód UT WoS článku
000700908200001
EID výsledku v databázi Scopus
2-s2.0-85119212148