Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F21%3A10247540" target="_blank" >RIV/61989100:27710/21:10247540 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202000800" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202000800</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/solr.202000800" target="_blank" >10.1002/solr.202000800</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides
Popis výsledku v původním jazyce
Antimony chalcogenides have become a family of promising photoelectric materials for high-efficiency solar cells. To date, single-junction solar cells based on individual antimony selenide or sulfide are dominant and show limited photoelectric conversion efficiency. Therefore, great gaps remain for the multiple junction solar cells. Herein, triple-junction antimony chalcogenides-based solar cells are designed and optimized with a theoretical efficiency of 32.98% through band engineering strategies with Sb2S3/Sb2(S0.7Se0.3)3/Sb2Se3 stacking. The optimum Se content of the mid-cell should be maintained low, i.e., 30% for achieving a low defect density in an absorber layer. Therefore, Sb2(S0.7Se0.3)3-based mid solar cells have contributed to elevate the external quantum efficiency in triple-junction devices by the full utilization of the solar spectrum. In a single-junction solar cell, the bandgap gradient is regulated through the Se content gradient along the depth profile of Sb2(S1MINUS SIGN xSex)3. Besides, an increasing Se content profile provides an additional built-in electric field for boosting hole charge carrier collection. Thus, the high charge carrier generation rate leads to a 17.96% improvement in the conversion efficiency compared with a conventional cell. This work may pave the way to boost the conversion efficiency of antimony chalcogenides-based solar cells to their theoretical limits.
Název v anglickém jazyce
Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides
Popis výsledku anglicky
Antimony chalcogenides have become a family of promising photoelectric materials for high-efficiency solar cells. To date, single-junction solar cells based on individual antimony selenide or sulfide are dominant and show limited photoelectric conversion efficiency. Therefore, great gaps remain for the multiple junction solar cells. Herein, triple-junction antimony chalcogenides-based solar cells are designed and optimized with a theoretical efficiency of 32.98% through band engineering strategies with Sb2S3/Sb2(S0.7Se0.3)3/Sb2Se3 stacking. The optimum Se content of the mid-cell should be maintained low, i.e., 30% for achieving a low defect density in an absorber layer. Therefore, Sb2(S0.7Se0.3)3-based mid solar cells have contributed to elevate the external quantum efficiency in triple-junction devices by the full utilization of the solar spectrum. In a single-junction solar cell, the bandgap gradient is regulated through the Se content gradient along the depth profile of Sb2(S1MINUS SIGN xSex)3. Besides, an increasing Se content profile provides an additional built-in electric field for boosting hole charge carrier collection. Thus, the high charge carrier generation rate leads to a 17.96% improvement in the conversion efficiency compared with a conventional cell. This work may pave the way to boost the conversion efficiency of antimony chalcogenides-based solar cells to their theoretical limits.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20400 - Chemical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institut environmentálních technologií - excelentní výzkum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Solar RRL
ISSN
2367-198X
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
000621809000001
EID výsledku v databázi Scopus
2-s2.0-85101602611