Growth and properties of AIII BV QD structures for intermediate band solar cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F15%3A00447827" target="_blank" >RIV/68378271:_____/15:00447827 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985882:_____/15:00447827
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jcrysgro.2014.11.013" target="_blank" >http://dx.doi.org/10.1016/j.jcrysgro.2014.11.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcrysgro.2014.11.013" target="_blank" >10.1016/j.jcrysgro.2014.11.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Growth and properties of AIII BV QD structures for intermediate band solar cells
Popis výsledku v původním jazyce
Intermediate band solar cells theoretically offer a promising way to significantly increase cell efficiency compared to a single-junction solar cell. We focused on the preparation of antimony containing materials as a covering of QD layers. In this paperwe discuss how the concentration gradient of GaAsSb strain reducing layers can influence the resulting optical properties of the solar cell structures. The main principle of the structure is that the absorption of light is achieved at QD excited stateswith better overlap of electron and hole wave functions. With fast relaxation of carriers to the ground state the electrons and holes are quickly spatially separated. Two different composition gradients of GaAsSb SRL were used for the solar cell structure. One or five quantum dot stacks were compared. The maximal PC increased approximately 17 times with increasing number of QD layers from 1 to 5. The results suggest high application potential of this structure for photovoltaics.
Název v anglickém jazyce
Growth and properties of AIII BV QD structures for intermediate band solar cells
Popis výsledku anglicky
Intermediate band solar cells theoretically offer a promising way to significantly increase cell efficiency compared to a single-junction solar cell. We focused on the preparation of antimony containing materials as a covering of QD layers. In this paperwe discuss how the concentration gradient of GaAsSb strain reducing layers can influence the resulting optical properties of the solar cell structures. The main principle of the structure is that the absorption of light is achieved at QD excited stateswith better overlap of electron and hole wave functions. With fast relaxation of carriers to the ground state the electrons and holes are quickly spatially separated. Two different composition gradients of GaAsSb SRL were used for the solar cell structure. One or five quantum dot stacks were compared. The maximal PC increased approximately 17 times with increasing number of QD layers from 1 to 5. The results suggest high application potential of this structure for photovoltaics.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BM - Fyzika pevných látek a magnetismus
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GP14-21285P" target="_blank" >GP14-21285P: Solární články s vloženým pásem</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Crystal Growth
ISSN
0022-0248
e-ISSN
—
Svazek periodika
414
Číslo periodika v rámci svazku
172
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
5
Strana od-do
172-176
Kód UT WoS článku
000349602900031
EID výsledku v databázi Scopus
2-s2.0-84922496581