Use of Neural Networks for Lifetime Analysis of Teeming Ladles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10251121" target="_blank" >RIV/61989100:27710/22:10251121 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27360/22:10251121
Výsledek na webu
<a href="https://www.mdpi.com/1956460" target="_blank" >https://www.mdpi.com/1956460</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma15228234" target="_blank" >10.3390/ma15228234</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Use of Neural Networks for Lifetime Analysis of Teeming Ladles
Popis výsledku v původním jazyce
When describing the behaviour and modelling of real systems, which are characterized by considerable complexity, great difficulty, and often the impossibility of their formal mathematical description, and whose operational monitoring and measurement are difficult, conventional analytical-statistical models run into the limits of their use. The application of these models leads to necessary simplifications, which cause insufficient adequacy of the resulting mathematical description. In such cases, it is appropriate for modelling to use the methods brought by a new scientific discipline-artificial intelligence. Artificial intelligence provides very promising tools for describing and controlling complex systems. The method of neural networks was chosen for the analysis of the lifetime of the teeming ladle. Artificial neural networks are mathematical models that approximate non-linear functions of an arbitrary waveform. The advantage of neural networks is their ability to generalize the dependencies between individual quantities by learning the presented patterns. This property of a neural network is referred to as generalization. Their use is suitable for processing complex problems where the dependencies between individual quantities are not exactly known.
Název v anglickém jazyce
Use of Neural Networks for Lifetime Analysis of Teeming Ladles
Popis výsledku anglicky
When describing the behaviour and modelling of real systems, which are characterized by considerable complexity, great difficulty, and often the impossibility of their formal mathematical description, and whose operational monitoring and measurement are difficult, conventional analytical-statistical models run into the limits of their use. The application of these models leads to necessary simplifications, which cause insufficient adequacy of the resulting mathematical description. In such cases, it is appropriate for modelling to use the methods brought by a new scientific discipline-artificial intelligence. Artificial intelligence provides very promising tools for describing and controlling complex systems. The method of neural networks was chosen for the analysis of the lifetime of the teeming ladle. Artificial neural networks are mathematical models that approximate non-linear functions of an arbitrary waveform. The advantage of neural networks is their ability to generalize the dependencies between individual quantities by learning the presented patterns. This property of a neural network is referred to as generalization. Their use is suitable for processing complex problems where the dependencies between individual quantities are not exactly known.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/FW01010097" target="_blank" >FW01010097: Automatizované řídicí systémy v oblasti pánvové metalurgie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
nestrankovano
Kód UT WoS článku
000887369200001
EID výsledku v databázi Scopus
—