A NEURAL-VISUALIZATION IDS FOR HONEYNET DATA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F12%3A86084429" target="_blank" >RIV/61989100:27740/12:86084429 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S0129065712500050" target="_blank" >http://dx.doi.org/10.1142/S0129065712500050</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129065712500050" target="_blank" >10.1142/S0129065712500050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A NEURAL-VISUALIZATION IDS FOR HONEYNET DATA
Popis výsledku v původním jazyce
Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspectionof the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and co
Název v anglickém jazyce
A NEURAL-VISUALIZATION IDS FOR HONEYNET DATA
Popis výsledku anglicky
Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspectionof the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and co
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Neural Systems
ISSN
0129-0657
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000302210200005
EID výsledku v databázi Scopus
—