A Novel Genetic Algorithm Based on Immunity and Its Application
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F12%3A86084777" target="_blank" >RIV/61989100:27740/12:86084777 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/HIS.2012.6421396" target="_blank" >http://dx.doi.org/10.1109/HIS.2012.6421396</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/HIS.2012.6421396" target="_blank" >10.1109/HIS.2012.6421396</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Genetic Algorithm Based on Immunity and Its Application
Popis výsledku v původním jazyce
In this paper, a novel genetic algorithm based on immunity (GABI) on the basis of parallel genetic algorithms (PGA) is proposed in order to overcome some defects of them, such as premature and slow convergence rate. The global performance of the algorithm is improved by introducing immunity theory into PGA. This is revealed in the following two aspects. One is that the immune selection based on proposed adjustable geometric-progression rank-based selection can prevent the algorithm from premature. The other is that convergence rate can be accelerate by individual migration strategy between subpopulations based on immune memory mechanism. In this algorithm, the idea of multiple subpopulations evolution based on improved adaptive crossover and mutation is adopted. To be hybridized with the Powell method can further improve local searching performance of the algorithm. An example of layout design shows that GABI is feasible and effective. 2012 IEEE.
Název v anglickém jazyce
A Novel Genetic Algorithm Based on Immunity and Its Application
Popis výsledku anglicky
In this paper, a novel genetic algorithm based on immunity (GABI) on the basis of parallel genetic algorithms (PGA) is proposed in order to overcome some defects of them, such as premature and slow convergence rate. The global performance of the algorithm is improved by introducing immunity theory into PGA. This is revealed in the following two aspects. One is that the immune selection based on proposed adjustable geometric-progression rank-based selection can prevent the algorithm from premature. The other is that convergence rate can be accelerate by individual migration strategy between subpopulations based on immune memory mechanism. In this algorithm, the idea of multiple subpopulations evolution based on improved adaptive crossover and mutation is adopted. To be hybridized with the Powell method can further improve local searching performance of the algorithm. An example of layout design shows that GABI is feasible and effective. 2012 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2012 12th International Conference on Hybrid Intelligent Systems, HIS 2012
ISBN
978-1-4673-5115-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
566-571
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Pune
Datum konání akce
4. 12. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—