Optimization of Selected Remote Sensing Algorithms for Many-Core Architectures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F16%3A86099011" target="_blank" >RIV/61989100:27740/16:86099011 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7471409" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7471409</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JSTARS.2016.2558492" target="_blank" >10.1109/JSTARS.2016.2558492</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of Selected Remote Sensing Algorithms for Many-Core Architectures
Popis výsledku v původním jazyce
This paper evaluates the potential of embedded graphic processing units (GPU) in the Nvidia's Tegra K1 for onboard processing. The performance is compared to a general purpose multicore central processing unit (CPU), a full-fledge GPU accelerator, and an Intel Xeon Phi coprocessor, for two representative potential applications, wavelet spectral dimension reduction of hyperspectral imagery and automated cloud-cover assessment (ACCA). For these applications, Tegra K1 achieved 51% performance for the ACCA algorithm and 20% performance for the dimension reduction algorithm, as compared to the performance of the high-end eight-core server Intel Xeon CPU which has a 13.5 times higher power consumption. This paper also shows the potential of modern high-performance computing accelerators for algorithms such as the ones for which the paper presents an optimized parallel implementation. The two algorithms that were tested mostly contain spatially localized computations, and one can assume that all image processing algorithms containing localized computations would exhibit similar speed-ups when implemented on these parallel architectures.
Název v anglickém jazyce
Optimization of Selected Remote Sensing Algorithms for Many-Core Architectures
Popis výsledku anglicky
This paper evaluates the potential of embedded graphic processing units (GPU) in the Nvidia's Tegra K1 for onboard processing. The performance is compared to a general purpose multicore central processing unit (CPU), a full-fledge GPU accelerator, and an Intel Xeon Phi coprocessor, for two representative potential applications, wavelet spectral dimension reduction of hyperspectral imagery and automated cloud-cover assessment (ACCA). For these applications, Tegra K1 achieved 51% performance for the ACCA algorithm and 20% performance for the dimension reduction algorithm, as compared to the performance of the high-end eight-core server Intel Xeon CPU which has a 13.5 times higher power consumption. This paper also shows the potential of modern high-performance computing accelerators for algorithms such as the ones for which the paper presents an optimized parallel implementation. The two algorithms that were tested mostly contain spatially localized computations, and one can assume that all image processing algorithms containing localized computations would exhibit similar speed-ups when implemented on these parallel architectures.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Journal of selected topics in applied earth observations and remote sensing
ISSN
1939-1404
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
5576-5587
Kód UT WoS článku
000391468900003
EID výsledku v databázi Scopus
2-s2.0-84969555915