GPU-acceleration of the ELPA2 distributed eigensolver for dense symmetric and hermitian eigenproblems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00539376" target="_blank" >RIV/67985840:_____/21:00539376 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cpc.2020.107808" target="_blank" >https://doi.org/10.1016/j.cpc.2020.107808</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cpc.2020.107808" target="_blank" >10.1016/j.cpc.2020.107808</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GPU-acceleration of the ELPA2 distributed eigensolver for dense symmetric and hermitian eigenproblems
Popis výsledku v původním jazyce
The solution of eigenproblems is often a key computational bottleneck that limits the tractable system size of numerical algorithms, among them electronic structure theory in chemistry and in condensed matter physics. Large eigenproblems can easily exceed the capacity of a single compute node, thus must be solved on distributed-memory parallel computers. We here present GPU-oriented optimizations of the ELPA two-stage tridiagonalization eigensolver (ELPA2). On top of cuBLAS-based GPU offloading, we add a CUDA kernel to speed up the back-transformation of eigenvectors, which can be the computationally most expensive part of the two-stage tridiagonalization algorithm. We benchmark the performance of this GPU-accelerated eigensolver on two hybrid CPU–GPU architectures, namely a compute cluster based on Intel Xeon Gold CPUs and NVIDIA Volta GPUs, and the Summit supercomputer based on IBM POWER9 CPUs and NVIDIA Volta GPUs. Consistent with previous benchmarks on CPU-only architectures, the GPU-accelerated two-stage solver exhibits a parallel performance superior to the one-stage counterpart. Finally, we demonstrate the performance of the GPU-accelerated eigensolver developed in this work for routine semi-local KS-DFT calculations comprising thousands of atoms.
Název v anglickém jazyce
GPU-acceleration of the ELPA2 distributed eigensolver for dense symmetric and hermitian eigenproblems
Popis výsledku anglicky
The solution of eigenproblems is often a key computational bottleneck that limits the tractable system size of numerical algorithms, among them electronic structure theory in chemistry and in condensed matter physics. Large eigenproblems can easily exceed the capacity of a single compute node, thus must be solved on distributed-memory parallel computers. We here present GPU-oriented optimizations of the ELPA two-stage tridiagonalization eigensolver (ELPA2). On top of cuBLAS-based GPU offloading, we add a CUDA kernel to speed up the back-transformation of eigenvectors, which can be the computationally most expensive part of the two-stage tridiagonalization algorithm. We benchmark the performance of this GPU-accelerated eigensolver on two hybrid CPU–GPU architectures, namely a compute cluster based on Intel Xeon Gold CPUs and NVIDIA Volta GPUs, and the Summit supercomputer based on IBM POWER9 CPUs and NVIDIA Volta GPUs. Consistent with previous benchmarks on CPU-only architectures, the GPU-accelerated two-stage solver exhibits a parallel performance superior to the one-stage counterpart. Finally, we demonstrate the performance of the GPU-accelerated eigensolver developed in this work for routine semi-local KS-DFT calculations comprising thousands of atoms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Physics Communications
ISSN
0010-4655
e-ISSN
1879-2944
Svazek periodika
262
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
107808
Kód UT WoS článku
000633365000004
EID výsledku v databázi Scopus
2-s2.0-85099623870