Evaluation of differential evolution with interaction network on a real-parameter optimization benchmark
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F16%3A86100042" target="_blank" >RIV/61989100:27740/16:86100042 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/16:86100042
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7744165/" target="_blank" >http://ieeexplore.ieee.org/document/7744165/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2016.7744165" target="_blank" >10.1109/CEC.2016.7744165</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of differential evolution with interaction network on a real-parameter optimization benchmark
Popis výsledku v původním jazyce
Differential evolution (DE) is a popular member of the wide family of population-based evolutionary optimization methods. These general purpose methods solve arbitrary problems by iteratively evolving a pool (population) of candidate solutions. Candidate solutions are during the artificial evolution updated and modified so that they efficiently explore solution space of the solved problem. Population-based metaheuristics focus on finding local or global optima with respect to selected optimization criteria (objective function). The iterative updates of candidate solutions usually involve some sort of interaction and information exchange. This behaviour has been recently cast as a temporal interaction network to allow a network-centric representation and research of artificial evolution. In this paper, we use a network-based model of the interactions in DE to improve the underlying algorithm. A simple extension of a traditional DE utilizing the properties of its interaction network is proposed in order to study the usefulness of this concept. The extended algorithm is evaluated on the CEC 2016 real-parameter optimization benchmark. (C) 2016 IEEE.
Název v anglickém jazyce
Evaluation of differential evolution with interaction network on a real-parameter optimization benchmark
Popis výsledku anglicky
Differential evolution (DE) is a popular member of the wide family of population-based evolutionary optimization methods. These general purpose methods solve arbitrary problems by iteratively evolving a pool (population) of candidate solutions. Candidate solutions are during the artificial evolution updated and modified so that they efficiently explore solution space of the solved problem. Population-based metaheuristics focus on finding local or global optima with respect to selected optimization criteria (objective function). The iterative updates of candidate solutions usually involve some sort of interaction and information exchange. This behaviour has been recently cast as a temporal interaction network to allow a network-centric representation and research of artificial evolution. In this paper, we use a network-based model of the interactions in DE to improve the underlying algorithm. A simple extension of a traditional DE utilizing the properties of its interaction network is proposed in order to study the usefulness of this concept. The extended algorithm is evaluated on the CEC 2016 real-parameter optimization benchmark. (C) 2016 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE Congress on Evolutionary Computation, CEC 2016
ISBN
978-1-5090-0622-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
2974-2981
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Vancouver
Datum konání akce
24. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—