Differential evolution with preferential interaction network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63517319" target="_blank" >RIV/70883521:28140/17:63517319 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/17:10238696
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CEC.2017.7969535" target="_blank" >http://dx.doi.org/10.1109/CEC.2017.7969535</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2017.7969535" target="_blank" >10.1109/CEC.2017.7969535</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential evolution with preferential interaction network
Popis výsledku v původním jazyce
Population-based metaheuristic optimization methods are built upon an algorithmic implementation of different types of complex dynamic behaviours. The problem-solving strategies they implement are often inspired by various natural and social phenomena whose fundamental principles were adopted for the use in practical search and optimization problems. New insights into complex systems, attained among others within the fields of network science and social network analysis, can be successfully incorporated into the study of evolutionary and swarm methods and used to improve their efficiency. Preferential attachment is a principle governing the growth of many real-world networks. That makes it a natural candidate for the use with network-based models of artificial evolution. Differential evolution is a widely-used evolutionary algorithm valued for its efficiency and versatility as well as simplicity and ease of implementation. In this paper, a variant of differential evolution, guided by an auxiliary model of population dynamics built with the help of the preferential attachment principle, is designed. The efficiency of the proposed approach is analyzed on the CEC 2017 real-parameter optimization benchmark.
Název v anglickém jazyce
Differential evolution with preferential interaction network
Popis výsledku anglicky
Population-based metaheuristic optimization methods are built upon an algorithmic implementation of different types of complex dynamic behaviours. The problem-solving strategies they implement are often inspired by various natural and social phenomena whose fundamental principles were adopted for the use in practical search and optimization problems. New insights into complex systems, attained among others within the fields of network science and social network analysis, can be successfully incorporated into the study of evolutionary and swarm methods and used to improve their efficiency. Preferential attachment is a principle governing the growth of many real-world networks. That makes it a natural candidate for the use with network-based models of artificial evolution. Differential evolution is a widely-used evolutionary algorithm valued for its efficiency and versatility as well as simplicity and ease of implementation. In this paper, a variant of differential evolution, guided by an auxiliary model of population dynamics built with the help of the preferential attachment principle, is designed. The efficiency of the proposed approach is analyzed on the CEC 2017 real-parameter optimization benchmark.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings
ISBN
978-150904601-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
1916-1923
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Piscataway, New Jersey
Místo konání akce
Donostia-San Sebastian
Datum konání akce
5. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—