Implementation of BM3D filter on intel xeon phi for rendering in blender cycles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A10240535" target="_blank" >RIV/61989100:27740/18:10240535 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-97136-0_8" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-97136-0_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-97136-0_8" target="_blank" >10.1007/978-3-319-97136-0_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of BM3D filter on intel xeon phi for rendering in blender cycles
Popis výsledku v původním jazyce
In this paper parallel implementation of Sparse 3D Transform-Domain Collaborative filter (BM3D) on the Intel Xeon Phi architecture is presented. Efficiency of the implementation in terms of speedup compared to serial implementation of the filter is demonstrated on denoising of rendered images. We also provide comparison with another parallel CPU version and show that ours performs better. Using the state-of-the-art image filters such as BM3D offers powerful denoising capability in the area of image filtering. To achieve the highest possible quality of the result, the filter has to perform multiple demanding tasks over a single image. Effective implementation of the filter is therefore very important. This is also the case, when filtering is used for image rendering. Rendering times can be significantly decreased by application of powerful time efficient denoising filters. Unfortunately the existing serial implementation of the BM3D filter is time consuming. In this paper we provide efficient parallel implementation of the BM3D filter, and we apply it as a noise reduction technique to the rendered images that reduces the rendering times. We also provide an optimized version of the filter for the Intel Xeon Phi and Intel Xeon architecture.
Název v anglickém jazyce
Implementation of BM3D filter on intel xeon phi for rendering in blender cycles
Popis výsledku anglicky
In this paper parallel implementation of Sparse 3D Transform-Domain Collaborative filter (BM3D) on the Intel Xeon Phi architecture is presented. Efficiency of the implementation in terms of speedup compared to serial implementation of the filter is demonstrated on denoising of rendered images. We also provide comparison with another parallel CPU version and show that ours performs better. Using the state-of-the-art image filters such as BM3D offers powerful denoising capability in the area of image filtering. To achieve the highest possible quality of the result, the filter has to perform multiple demanding tasks over a single image. Effective implementation of the filter is therefore very important. This is also the case, when filtering is used for image rendering. Rendering times can be significantly decreased by application of powerful time efficient denoising filters. Unfortunately the existing serial implementation of the BM3D filter is time consuming. In this paper we provide efficient parallel implementation of the BM3D filter, and we apply it as a noise reduction technique to the rendered images that reduces the rendering times. We also provide an optimized version of the filter for the Intel Xeon Phi and Intel Xeon architecture.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015070" target="_blank" >LM2015070: IT4Innovations národní superpočítačové centrum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11087
ISBN
978-3-319-97135-3
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
101-114
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Karolinka
Datum konání akce
22. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—